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ABSTRACT
With the increasing popularity of open-source software develop-
ment, there is a tremendous growth of software artifacts that pro-
vide insight into how people build software. Researchers are al-
ways looking for large-scale and representative software artifacts
to produce systematic and unbiased validation of novel and existing
techniques. For example, in the domain of software requirements
traceability, researchers often use software applications with mul-
tiple types of artifacts, such as requirements, system elements,
veri�cations, or tasks to develop and evaluate their traceability
analysis techniques. However, the manual identi�cation of rich
software artifacts is very labor-intensive. In this work, we �rst
conduct a large-scale study to identify which types of software
artifacts are produced by a wide variety of open-source projects
at di�erent levels of granularity. Then we propose an automated
approach based onMachine Learning techniques to identify various
types of software artifacts. Through a set of experiments, we report
and compare the performance of these algorithms when applied to
software artifacts.
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• Software and its engineering→ Software organization and
properties; Software notations and tools; Software libraries
and repositories;
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1 INTRODUCTION
Empirical and data-centric research is largely enabled by the ex-
istence of datasets used to develop new research techniques or
evaluate and compare existing ones. An example of data-centric
research is the automated software requirements traceability. In
this area, training datasets are needed to train trace-algorithms
based on Machine Learning (ML) techniques. Researchers use la-
beled datasets of functional and non-functional requirements to
train classi�cation techniques to create traceability links between
quality attributes and requirements document, design models and
source code [7, 35, 38, 39, 46]. Validation datasets are needed to tune
parameters of such trace-algorithms [6, 30, 35]. Testing datasets are
used to test the performance of trace-algorithms on unseen data. Re-
searchers use datasets to evaluate the accuracy of trace-algorithms
based on Information Retrieval (IR) by establishing links between
requirements and source code [11, 12, 21, 46, 53]. In other domains,
researchers use design documents to create a ground truth software
architecture model for an evolving software system [16].

Obtaining such software development datasets is one of the most
frequently reported barriers for researchers in the software engi-
neering domain [28, 44]. In recent years, with the advancement
and popularity of the open-source approach to software devel-
opment, researchers bene�t from publicly available source code
repositories [36]. Software artifacts, other than source code and
issue tracking entities, can also provide a great deal of insight into
a software system and facilitate knowledge sharing and informa-
tion reuse. However, it can be a labor-intensive task to manually
identify the types of artifacts available or lacking in a speci�c open-
source project. Previous studies show that obtaining such artifacts
from open-source projects is non-trivial and researchers lack ap-
propriate automated support to identify, �lter, and browse through
such artifacts [57]. More importantly, we currently lack an in-depth
understanding of the various types of software artifacts that are
available in open-source projects. The common assumption is that
open-source projects often lack software artifacts such as require-
ments and design documents.

In this paper, we aim at improving the understanding of open-
source projects by investigating this common assumption, thus,
answering two motivating questions:

Motivating Question #1:What types of artifacts are created
during open-source software development?

To this end, we conduct a large-scale empirical study involving
383 open-source software projects that are randomly sampled from
GitHub. These projects are studied to obtain an empirically-based
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understanding of the artifacts developed in open-source projects.
Then we classify all artifacts contained in this sample of open-
source projects using the proposed automatic approach. Results
show that indeed open-source software projects often lack docu-
mentation related artifacts, which account for only 6.12% of the total
number of software artifacts. Although the quantity of documen-
tation related artifacts is low, 14.88% of the projects contain either
design or requirement documents, which means that open-source
projects could be a valuable resource for researchers interested in
obtaining such artifacts.

Motivating Question #2: Can we automatically detect and
categorize open-source software artifacts?

Using heuristics, we categorize artifacts into two groups: those
that can be classi�ed based on �le name and extension alone (e.g., bat
�les) and those that require deeper analysis in order to be classi-
�ed (e.g., text documents). We manually classify a sample of the
artifacts from the second group and construct an oracle. During
the manual classi�cation, we identify features that are relevant for
artifact classi�cation. After this, we explore various ML algorithms
for software artifact classi�cation. Next, we report the performance
of our approach on the validation and testing datasets and �nally,
we classify all artifacts present in the 383 open-source projects and
report the prevalence of the di�erent types of artifacts.

Our results show that we can successfully apply ML algorithms
to text documents to classify software artifacts. Using ensemble
techniques, such as voting, we are able to combine the predictive
power of several algorithms that perform well on unique categories
of software artifacts to create one classi�er with improved perfor-
mance across all categories. Our model achieves 85% precision and
82% recall when evaluated on the manually created oracle using 10-
fold cross-validation. When applied to a testing dataset of unseen
data gathered after the parameter tuning on the validation dataset,
our approach achieves 76% precision and 75% recall.

The contributions of this work are as follows:
1. We provide insights into the types of artifacts created during

open-source software development. Although documentation re-
lated artifacts only account for 6.12% of total software artifacts in
open-source software projects, 14.88% of the projects contain either
design or requirement documents, which is valuable resources for
empirical studies that require such documents.

2. We propose a novel approach that utilizes heuristics and vari-
ous ML classi�ers that automatically classify software artifacts.

3. We supply a replication package [31], which includes (i) infor-
mation about the sampled projects, (ii) an oracle of 208 manually
classi�ed documentation related software artifacts used for training,
validation, and testing of the proposed approach, and (iii) the list
of features used for the ML algorithms.

Paper Structure. Section 2 provides details regarding the study
design and the automatic artifact classi�cation approach. Section 3
presents the results, while Section 4 discusses related literature.
Threats to validity are discussed in Section 5 and Section 6 concludes
the paper and outlines directions for future work.

Figure 1: Approach overview.

2 STUDY DEFINITION AND DESIGN
The goal of this study is to investigate what types of artifacts are
created during open-source software development. To achieve this
goal, we propose an automatic approach for software artifact de-
tection and classi�cation using machine learning approaches. The
quality focus is the performance of the proposed approach on ar-
tifact classi�cation in terms of selected evaluation metrics such
as precision and recall. The perspective of the study is that of re-
searchers, who are interested in automatically obtaining software
development artifacts that �t their research need. The evaluation is
carried out in the context of open-source projects collected from
GitHub [24]. More speci�cally, the study aims at addressing the
following research questions:

• RQ1: How can software artifacts be categorized? To answer
this question we randomly sample from a large set of open-
source projects and manually examine the type of artifacts
available.

• RQ2: How accurate is the proposed approach for automatic
software artifact classi�cation? We investigate the perfor-
mance of the proposed approach using di�erent evaluation
metrics. We report results on validation and testing datasets
using 10-fold cross-validation.

• RQ3:What types of artifacts are created during open-source
software development? We classify all artifacts present in the
studied open-source projects and report the prevalence of
the di�erent types of artifacts.

Figure 1 depicts the overview of our approach, which is designed
to automatically classify software artifacts leveraging (i) heuris-
tics based on �le names and extensions and (ii) existing ML algo-
rithms. To answerRQ1, we collect a large set of diverse open-source
projects and obtain a signi�cant random sample of the projects. We
identify the artifacts contained in the sampled projects and divide
them into two groups by applying heuristics on �le names and
extensions. The �rst group contains artifacts that can be classi�ed
solely based on �le names and extensions whereas the second group
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contains artifacts that require deeper analysis in order to be classi-
�ed. We manually classify a sample of the artifacts contained in the
second group to construct an oracle of classi�ed artifacts. During
the manual classi�cation, we also identify features that could be
used to automate the artifact classi�cation. For RQ2, we automate
the feature extraction process and use various ML algorithms to
automatically classify software artifacts belonging to the second
group. Finally, to answer RQ3 we classify all artifacts of the studied
open-source projects and report the frequency of occurrence of
each type of artifact identi�ed during the manual process.

The rest of this section is organized as follows: Section 2.1 pro-
vides details about the software systems used in this study. Sec-
tion 2.2 describes the process that we followed to create the or-
acle. Section 2.3 describes the proposed automatic classi�cation
approach and section 2.4 lists the evaluation metrics used to evalu-
ate the performance of the proposed approach for automatic artifact
classi�cation.

2.1 Subject Systems
We extract a large set of 91,108 open-source projects from GitHub
making use of a code crawling application known asGHTorrent [19].
GHTorrent acts as a service to extract data and events, returning
MongoDB data dumps. The dumps are composed of information
about projects in the form of users, comments on commits, lan-
guages, pull requests, follower-following relations, and others.

To collect a signi�cant sample of projects for our study, we ran-
domly sample 383 projects from the collected open-source projects,
ensuring 95% con�dence level and 5% margin of error. All research
questions are addressed using the sampled projects.

2.2 Oracle
To create an oracle of classi�ed software artifacts, we manually
examine a random set of artifacts from the 383 sampled projects.
When the �le name/extension are insu�cient to classify an artifact,
we analyze the �le content. Two coders perform the classi�cation
of artifacts independently. An inter-rater reliability (IRR) analy-
sis [23] is used to assess the degree to which coders consistently
classify software artifacts. Both coders are Master students in Com-
puter Science. Disagreements between the coders are resolved with
discussions and when necessary a third coder is brought in. The
category of artifacts are coded using categorical variables. The
Cohen’s kappa statistic measures the observed level of the agree-
ment between coders for a set of nominal ratings and corrects for
agreement that would be expected by chance, providing a stan-
dardized index of IRR that can be generalized across studies [23].
Possible values for kappa range from -1 to 1, with 1 indicating a per-
fect agreement, 0 indicating a completely random agreement, and
-1 indicating a total disagreement. Landis and Koch [27] provide
guidelines for interpreting kappa values as follows: values from 0.0
to 0.2 indicate slight agreement, values from 0.21 to 0.40 indicate
fair agreement, 0.41 to 0.60 indicate moderate agreement, 0.61 to
0.80 indicate substantial agreement, and 0.81 to 1.0 indicate almost
perfect or perfect agreement. The data in this study is collected
through ratings provided by coders and has a signi�cant impact
on the computation and interpretation of our study. It is important
that coders can independently reach similar conclusions about the

types of software artifacts they identify because that con�rms the
established categories are well de�ned. Thus, we target at least
substantial agreement, i.e., above 0.61.

2.3 Automatic Artifact Classi�cation
To automate the software artifact classi�cation process we identify
heuristics based on �le names and extensions (Section 2.3.1). For
�les that require further analysis we extract features (Section 2.3.2)
that we use as input to machine learning algorithms (Section 2.3.3).

2.3.1 Heuristics Application. Weutilize existing �le name/extension
categorization [10] and we randomly sample a portion of the most
frequently occurring extensions to con�rm the correctness of such
categorization. In addition to �le extension, we expect the �le name
to provide useful information in artifacts identi�cation as well.
For example, testing code is often organized under directory with
names contain “test" or “tests" and �les with .wav extension can be
automatically identi�ed as audio �le. Such identi�cation is assumed
to be correct by construction. On the other hand, some �les, such
as .txt, can not be identi�ed without examining the �le content.

2.3.2 Feature Creation Process. Generating a set of features for
text classi�cation problems could be achieved with the use of vari-
ous information retrieval techniques. For instance, one could use
a Vector Space Model [43] and use a weighting schema such as
Term Frequency-Inverse Document Frequency (TF-IDF) [45] to au-
tomatically extract the most important terms in a document. Other,
more sophisticated techniques that could be used are Latent Seman-
tic Indexing (LSI) [14] and Latent Dirichlet Allocation (LDA) [3].
Information retrieval techniques are most useful when the charac-
teristics of the documents that we are working on are unknown. In
other words, we rely on the technique to identify hidden patterns
that characterize each document.

Instead, we decided to use the knowledge gained through the
manual validation process of artifacts and thus manually creating
the set of features that characterize each type of artifact. Because an
optimal set of features cannot be determined a priori, the two anno-
tators generate an initial set of features and iteratively re�ne the set
through discussions. This manual approach gives us more �exibility
in determining the relevant set of features, while harnessing the
knowledge gained during the oracle creation process.

2.3.3 Machine Learning Algorithms. We select seven di�erent
machine learning approaches belonging to three di�erent cate-
gories: decision trees, Support Vector Machines, and Bayesian Net-
works. Research has shown that these algorithms perform well for
text classi�cation problems [25, 32, 34, 49]. We use the implementa-
tions provided through Weka [22] and evaluate the classi�ers using
10-fold cross-validation. In other words, we evaluate the predictive
models by partitioning the original sample into 10 equal sized sub
samples, performing the analysis on one subset, and validating the
analysis on the other. The validation is repeated 10 times to obtain
an average estimate of the predictive model. We brie�y describe the
selected algorithms and the parameter tuning that we performed:

(1) Random Forest [4] averages the predictions of a number
of tree predictors where each tree is fully grown and is based
on independently sampled values. The large number of trees
avoids over �tting. Random Forest is known to be robust



MSR ’18, May 28–29, 2018, Gothenburg, Sweden Ma et al.

to noise and to correlated variables. We use the function
randomForest (package randomForest) with the number of
trees being 500 as a starting point, which has shown good
results in previous works [52]. We tune the parameters for
the number of trees varying from 500 to 1000 and for the
features explored at each branch from the default value:
(log2(#predictors)+1) to 20% of the total number of features
with a step of 0.05.

(2) Sequential Minimal Optimization (SMO) is an imple-
mentation of John Platt’s sequential minimal optimization
algorithm to train a support vector classi�er. We use RBF ker-
nel, Polynomial kernel, and the Pearson VII function-based
universal kernel (PUK) [50] in combination with this classi-
�er. We tune the exponent parameter of the classi�er varying
from 1.0 to 4.0 with a step of 0.5, the gamma parameter from
0 to 1 with a step of 0.05, and the cost parameter from 1 to
50 with a step of 1.

(3) Multinomial Naïve Bayes is a speci�c version of Naïve
Bayes, created for improved performance on text classi�ca-
tion problems [34]. Naïve Bayes is the simplest probabilistic
classi�er applying Bayes’ theorem. It makes strong assump-
tions on the input: the features are considered conditionally
independent among each other. We explore the performance
of the classi�er using kernel estimator and supervised dis-
cretization.

(4) J48 is an implementation of the C4.5 decision tree. This
algorithm produces human understandable rules for the clas-
si�cation of new instances. The implementation provided
through Weka o�ers three di�erent approaches to compute
the decision trees, based on the type of the pruning tech-
niques: pruned, unpruned, and reduced error pruning. We
tune the parameter for the minimum number of instances at
each leaf from 1 to 8 with a step of 1.

(5) Ensemble Learning is used to combine individual clas-
si�ers with the aim of obtaining better overall predictive
performance. We use the majority vote algorithm provided
through Weka. The majority vote approach considers the
votes of each classi�er for the label of an instance and uses
the label agreed upon by the majority.

2.4 Evaluation
We evaluate the performance of the automatic artifact classi�cation
approach using the following evaluation metrics:

2.4.1 Precision. Precision is de�ned as the percentage of artifact
predicted as belonging to the categories that are correct with respect
to the oracle, Precision = TP/(TP + FP), where TP and FP are the
number of true and false positives, respectively.

2.4.2 True Positive Rate (TPR). TPR or relative recall is calcu-
lated as the ratio between the number of true positives and the
total number of positive events, i.e., TPR = TP/(TP + FN ). In the
context of this study, the TPR indicates how many of the manually
known software artifacts are correctly discovered.

2.4.3 F-Score. Precision and recall are inversely related, thus, it
is di�cult to compare results of the model using the two metrics.

F-score is used to aggregate both measures into a single value. F-
score is the harmonic mean of the precision and recall, i.e., F =
2⇤Precision⇤TPR/(Precision+TPR). F-score reaches its best value
at 1 (perfect precision and recall) and worst at 0.

2.4.4 Area Under the Receiver Operating Characteristic (ROC)
curve. ROC is a plot of the true positive rate against the false positive
rate at various discrimination thresholds. The area under ROC is
close to 1 when the classi�er performs better and close to 0.5 when
the classi�cation model is poor and behaves like a random classi�er.

2.4.5 Ma�hews Correlation Coe�icient (MCC). MCC is a mea-
sure used in machine learning to assess the quality of a two-class
classi�er especially when the classes are unbalanced [33].

MCC = T P ·T N�F P ·FNp
(T P+F P )(FN+T N )(F P+T N )(T P+FN )

Values range from -1 to 1, where 0 indicates that the approach
performs like a random classi�er. Other correlation values are in-
terpreted as follows: MCC < 0.2: low, 0.2  MCC < 0.4: fair,
0.4  MCC < 0.6: moderate, 0.6  MCC < 0.8: strong, and
MCC � 0.8: very strong [8].

2.4.6 Micro and Macro Average. There are di�erent ways to
average results of a multi-class classi�er. Macro-average treats
each class with equal weight and is calculated as the average of
the metrics computed within each class. Micro-average gives each
individual instance equal weight so that the largest classes have
most in�uence. It is computed by aggregating the outcomes across
all classes and computing a metric with aggregated outcomes. We
report all evaluation metrics along with both micro and macro
average.

3 RESULTS AND ANALYSIS
In this section, we report the results of our study, with the aim of
answering the research questions formulated in Section 2.

3.1 RQ1: How can software artifacts be
categorized?

We extracted 91,108 open-source projects in various programming
languages fromGitHub between April and October 2015. To achieve
95% con�dence level and 5% margin of error, we randomly select
383 applications and study software artifacts in those projects. The
size of the selected subjects, in terms of Lines Of Code (LOC), ranges
from 2 to 12 million LOC. Table 1 provides descriptive statistics of
the sampled projects1. In addition, Figure 2 shows the distribution
of the primary programming language across the projects, i.e., the
language with the highest number of LOC.

We identify the following artifact types only by �le names and
extensions as shown in Table 2: application, archive, audio, disk
image, font, image, project, source code, testing code, and miscel-
laneous. Some �le extensions can be associated with multiple �le
types. For example, png can be Portable Network Graphics Image
or Corel Paint Shop Pro Browser Catalogue, i.e., an image �le or a
documentation �le. We randomly sample 5 instances of such exten-
sions and assign them to one �le type based on their �le content. In
addition to extensions we separate testing code from source code,
1LOC is computed using CLOC [9] which counts blank lines, comment lines, and
physical lines of source code separately. We report the physical lines of source code.
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Figure 2: Distribution of primary languages in the sampled
projects.

Table 1: Statistics for the size of the sampled projects.

LOC
Min 2
Q1 374
Median 1,264
Mean 102,986
Q3 9,127.5
Max 12,609,300

by verifying if one of the following keywords appears in �le name
or directory: “test”, “tests”, and “mock”. Another heuristic is used
to identify miscellaneous �les based on the number of words in the
�le. Through experiments, we observe that a threshold of 30 o�ers
a good compromise between precision and recall.

We analyze the �le extensions associated with open-source
projects. There are 234,296 artifacts with 1,217 distinct �les ex-
tensions in the sampled projects, excluding hidden �les. However,
the top 38 most frequent �le extensions occur in more than 95%
of the projects and account for over 76% of the total artifacts. Ta-
ble 3 shows the top 38 most frequent �le extensions along with the
number of projects that contain �les with these extensions and the
number of �les with these extensions in the sampled projects. “Num.
of Projects" (%) reports on the number (percentage) of sampled ap-
plications that contain �les of each extension. “Num. of Files" (%)
reports on the number (percentage) of �les with each extension in
the sampled applications. “Cum. %" reports the cumulative % of the
artifacts. For instance, the �rst row shows that 1) 383 out of the 383
sampled projects, i.e., 100%, contain �les without extension and 2)
13,706 out of 234,296 artifacts, i.e., 5.85%, have no extension. The
extensions highlighted in gray are documentation related �les that
are not identi�ed by the heuristics shown in Table 2. Since it is not
feasible to manually go through every single �le, we sampled 2% of
�les with the highlighted extensions.

Table 2: Heuristics applied to identify types of non-
documentation related artifacts.

Artifact Type Heuristic
Application .bat .cmd .exe .ser .swf
Archive .a .gz .jar .pack .zip
Audio .kt .mp3 .ogg .wav
Disk Image .scl
Font .eot .otf .ttf .wo�
Image .blp .bmp .dds .gif .ico .jpeg .jpg .png .psd .rs .svg .tga

.tif .xpm
Project .csproj .pbxproj .vcproj .vcxproj
Source Code .as .asm .c .cc .class .co�ee .cpp .cs .cshtml .css .ctp .cxx

.d .dll .ebuild .ejs .el .erb .erl .f .f90 .go .gradle .groovy

.h .haml .hpp .hs .i .java .js .jsp .less .lua .m .mo .o .php

.phpt .phtml .pl .pm .pp .py .pyc .r .rb .s .scala .scss .scssc

.sh .smali .so .sql .swift .t .tcl .ts .vb .vim .rkt
Testing Code if a �le is classi�ed as code, we further examine if “test",

“tests", and/or “mock" is contained in fully quali�ed �le
name, ex. ProjectName/src/test/�le.java

Miscellaneous non-readable �les
non-English �les
insu�cient information (�les with  30 words)

To create an oracle of documentation related �les, two coders
manually and independently classify 894 randomly selected arti-
facts. 149 out of 894 sampled artifacts are documentation related
�les. During this manual classi�cation process, we iteratively re�ne
and consolidate the initial list of categories as needed. The initial
IRR value is 0.64 and it is calculated for a set of 115 artifacts. The
two coders then discuss the discrepancies to reach an agreement.
The subsequent IRR value increased to 0.786 for the next 115 ar-
tifacts, which indicates substantial agreement [27]. Since kappa
shows substantial agreement, the remaining software artifacts cate-
gorization was conducted by only 1 coder. Our manual analysis led
to the creation of a taxonomy of documentation related artifacts
with 7 distinct categories. A description of each category follows:

(1) Contributors’ Guide contain information targeting the
contributors to the project such as how to begin contributing
to the project, the review process, tips on debugging, etc.

(2) Design Documents contain information about the design
of the project, such as design patterns and design decisions,
underlying project framework and architecture, as well as
version compatibility details.

(3) License contain information about copyright and the type
of licenses the project operates under.

(4) List of Contributors contain information about and credit
to the authors and maintainers of the project, including au-
thor names, their roles, and contact information.

(5) Release Notes are usually documents shared with end users
or clients and outline speci�c version changes, bug �xes, or
enhancements made to the project.

(6) Requirement Documents often contain functional and
non-functional requirements, use cases, and other software
speci�cations that target expected user interactions.

(7) Setup Files contain all artifacts that have to do with project
setup. Examples include manifest �les, make �les, con�gura-
tion �les, and version requirement �les.
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Table 3: Extension distribution in the sampled projects.

File Num. of % Num. of % Cum. %
Extension Projects Files
no extension 383 100.00% 13,706 5.85% 5.85%
md 262 68.41% 1,853 0.79% 6.64%
html 162 42.30% 3,203 1.37% 8.01%
txt 162 42.30% 7,828 3.34% 11.35%
png 153 39.95% 8,450 3.61% 14.96%
js 152 39.69% 9,921 4.23% 19.19%
css 132 34.46% 1,405 0.60% 19.79%
xml 115 30.03% 6,147 2.62% 22.41%
json 109 28.46% 1,542 0.66% 23.07%
jpg 97 25.33% 1,300 0.55% 23.63%
java 79 20.63% 3,582 1.53% 25.15%
ico 65 16.97% 96 0.04% 25.20%
svg 59 15.40% 435 0.19% 25.38%
sh 58 15.14% 1,265 0.54% 25.92%
gif 56 14.62% 2,614 1.12% 27.04%
properties 53 13.84% 164 0.07% 27.11%
py 53 13.84% 15,147 6.46% 33.57%
h 49 12.79% 48,448 20.68% 54.25%
php 42 10.97% 2,645 1.13% 55.38%
jar 42 10.97% 260 0.11% 55.49%
ttf 42 10.97% 131 0.06% 55.55%
yml 39 10.18% 264 0.11% 55.66%
wo� 37 9.66% 79 0.03% 55.69%
eot 36 9.40% 78 0.03% 55.73%
pdf 35 9.14% 400 0.17% 55.90%
rb 32 8.36% 2,267 0.97% 56.86%
scss 29 7.57% 780 0.33% 57.20%
c 28 7.31% 43,056 18.38% 75.57%
sln 28 7.31% 100 0.04% 75.62%
lock 27 7.05% 41 0.02% 75.63%
conf 26 6.79% 270 0.12% 75.75%
bat 26 6.79% 51 0.02% 75.77%
plist 25 6.53% 266 0.11% 75.88%
cpp 25 6.53% 1,581 0.67% 76.56%
cache 23 6.01% 59 0.03% 76.58%
log 22 5.74% 133 0.06% 76.64%
con�g 21 5.48% 77 0.03% 76.67%
map 20 5.22% 123 0.05% 76.73%

Table 4: Sample list of features.

Document Type # Example Features
Contributors’ Guide 26 contribute, welcome, checkout, severity
Design Document 10 architecture, design, framework, layer
License 30 disclaimer, free, law, reproduction
List of Contributors 18 authors, instructions, maintainers, thank
Release Notes 30 added, bug, date, �xed, improve, version
Requirement Document 10 feature, functionality, support, requirement
Setup Files 25 build, con�gure, defaults, ignore, manifest

During the manual classi�cation, we identify 342 unique features
that characterize the categories in the above taxonomy. Some of
those are based on their frequency of occurrence in artifacts, while
others are identi�ed by the coders. We observe that �ve features
are not present in any of the �les in our oracle. We remove those
features and retain the remaining 337 features that we will use for

the automatic artifact classi�cation. Table 4 shows examples of the
features we used to identify each category and the distribution of
artifacts in our oracle. The complete list of features can be found in
our online replication package. Based on the in-depth analysis and
manual classi�cation of 894 artifacts, the following conclusion was
drawn:

RQ1 Summary: Some software artifacts can be categorized
solely using heuristics based on �le names and extensions. How-
ever, other artifacts that are documentation related require
deeper analysis and identi�cation of characterizing features
to be classi�ed.

3.2 RQ2: How accurate is the proposed
approach for automatic software artifact
classi�cation?

In this section we evaluate the performance of the automatic ar-
tifact classi�cation. We do not evaluate the classi�cation of non-
document related artifacts, i.e., those listed in Table 2 as those are
correct by construction. Table 5 contains the results of applying
ML algorithms using 10-fold cross-validation. Results per class as
well as the micro and macro averages across classes are reported.
Overall, Naïve Bayes Multinomial has the best performance with
a micro average precision of 0.80, 0.76 recall, 0.76 F-measure, 0.73
MCC, and 0.95 ROC. The high values for MCC and ROC indicate
that the classi�er performs very well on the validation dataset.

Values in bold indicate the best performance achieved per class
for both precision and recall. For example, at 0.74, J48 is able to
achieve the highest precision for the class Release Notes relative
to the other classi�ers. However, at 0.83, Naïve Bayes Multino-
mial achieves the highest recall for Release Notes. Each algorithm
achieves the best precision and recall performance for at least one
class, therefore, di�erent algorithms may be better suited to classify
instances from di�erent classes. Using ensemble techniques, such as
voting we are able to combine the predictive power of several algo-
rithms that perform well on unique classes, to create one classi�er
with improved performance across all classes.

Table 6 contains the results of classi�ers used in Table 5 combined
using ensemble learning. Speci�cally, the classi�ers are combined
using majority vote. Results in Table 5 indicate that Naïve Bayes
Multinomial performs the best on several di�erent classes, therefore
we increase the weight of its vote during classi�cation by two to
create a weighted majority vote, which has shown to be e�ective
in similar text classi�cation research [40]. As compared to the best
performing single classi�er, majority vote yields a micro average
precision of 0.85, which is a 5% increase, recall increases by 6% to
0.82, F-Measure increases by 7% to 0.83. MCC increases by 7% to 0.80
and ROC decreases to 0.90, which still indicates strong performance.

Requirement Document is the class with the lowest performance
using both single classi�ers and voting. However, using voting we
are able to achieve a better balance between precision and recall.
The best precision and recall for the class are both at 0.40 for single
classi�ers, however, with ensemble learning precision drops by
only 0.01 and recall increases by 0.26. Overall, voting improves
the performance in terms of precision and recall across all classes.
The only exception is with the class Setup Files for which SMO
Polynomial Kernel is able to achieve a 3% higher precision and
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Table 5: Performance of individual classi�ers and 10-fold cross-validation on the training dataset.

Classi�er Parameters Class Precision Recall F-Measure MCC ROC
Naïve Bayes Multinomial Default Requirement Document 0.35 0.70 0.47 0.45 0.92

Design Document 0.63 0.50 0.56 0.53 0.93
Release Notes 0.69 0.83 0.76 0.69 0.97
Setup Files 0.86 0.48 0.62 0.59 0.94
License 0.94 1.00 0.97 0.96 1.00
List of Contributors 0.89 0.89 0.89 0.87 0.99
Contributors’ Guide 0.86 0.69 0.77 0.73 0.89

Micro Average 0.80 0.76 0.76 0.73 0.95
Macro Average 0.74 0.73 0.72 0.69 0.95

SMO Poly Kernel Default Requirement Document 0.40 0.40 0.40 0.36 0.86
Design Document 0.43 0.30 0.35 0.32 0.91
Release Notes 0.70 0.77 0.73 0.66 0.90
Setup Files 0.77 0.92 0.84 0.81 0.96
License 0.94 0.97 0.95 0.94 0.99
List of Contributors 0.82 0.78 0.80 0.77 0.95
Contributors’ Guide 0.81 0.65 0.72 0.68 0.87

Micro Average 0.75 0.76 0.75 0.71 0.93
Macro Average 0.69 0.68 0.69 0.65 0.92

Random Forest #Trees 500 Requirement Document 0.40 0.20 0.27 0.25 0.91
Design Document 1.00 0.30 0.46 0.53 0.97
Release Notes 0.65 0.73 0.69 0.60 0.94
Setup Files 0.71 0.88 0.79 0.74 0.95
License 0.91 1.00 0.95 0.94 1.00
List of Contributors 0.87 0.72 0.79 0.77 0.98
Contributors’ Guide 0.64 0.69 0.67 0.59 0.93

Micro Average 0.74 0.74 0.72 0.69 0.96
Macro Average 0.74 0.00 0.69 0.63 0.95

J48 MinNumObj 4 Requirement Document 0.27 0.30 0.29 0.23 0.70
Design Document 0.67 0.60 0.63 0.61 0.84
Release Notes 0.74 0.67 0.70 0.63 0.87
Setup Files 0.45 0.52 0.48 0.37 0.76
License 0.93 0.93 0.93 0.92 0.98
List of Contributors 0.43 0.50 0.46 0.38 0.79
Contributors’ Guide 0.55 0.46 0.50 0.41 0.82

Micro Average 0.62 0.61 0.62 0.55 0.84
Macro Average 0.58 0.57 0.57 0.51 0.82

13% higher recall. Despite this, comparing the micro average for all
classes of SMO Polynomial Kernel to the ensemble approach, the
performance trade o� is a 10% increase in precision, 6% increase in
recall in favor of the ensemble approach.

In order to evaluate the model generated by the majority vote
algorithm, we run the classi�er on a newly generated oracle, the
testing dataset, and analyze the results. Table 7 contains the results
of the classi�er on the second oracle of 59 data points. Overall,
results for classes Contributors Guide, List of Contributors, Design
Documents, License, and Setup Files are very similar, in term of
F-Measure, MCC and ROC, to the performance obtained on the
�rst oracle. Release Notes and Requirement Documents are two
categories that perform signi�cantly worse with 0.35 decrease in
precision for Release Notes and 0.52 decrease in recall for Require-
ment Documents. The results for these two classes a�ect the overall
micro and macro averages. 3 out of 7 instances from the Require-
ment Document class are categorized as Release Notes and 2 out
of 10 instances of Release notes are categorized as Requirement

Documents. We investigate the ML features across the di�erent
types of artifacts to understand the drop of performance in the
testing dataset. Our analysis leads to two observations. First, we
note that there is a signi�cant decrease in the number of documents
containing the features for Requirement Documents in the testing
dataset. The second observation is that there is an increased overlap
of features between Requirement Documents and Release Notes
in the testing dataset. One explanation could be due to the fact
that the features we manually created are not representative of
Requirement Documents. Another explanation could be due to fact
that Requirement Documents in the second oracle are considerably
smaller in size compared to the Requirement Documents in the
�rst oracle. Thus, there might not be enough textual content, i.e.,
features, in the second oracle for the ML algorithms to perform well.
We plan to further investigate and try to improve the performance
of ML features regarding the Release Notes and Requirement Doc-
ument artifacts in our future work by adding more documents to
the training set and by comparing the performance of manually
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extracted features to that of automatically extracted features using
information retrieval approaches.

RQ2 Summary: Combining di�erent ML algorithms through
ensemble learning, we are able to automatically classify docu-
mentation related software artifacts with an average precision
of 85% and recall of 82% using 10-fold cross-validation on the
validation dataset—an oracle of 149 data points. Using the same
classi�er on a testing dataset of 59 new data points, our approach
achieves an average precision of 76% and a recall of 75%.

3.3 RQ3: What types of artifacts are created
during open-source software development?

To explore the types of artifacts created during open-source soft-
ware development, we run our classi�cation approach on the entire
sample set of 383 projects. Table 8 contains the predicted distri-
butions of various documentation and non-documentation related
artifacts created during open-source project development. “Num.
of Projects" (%) reports on the number (percentage) of sampled
applications that contain each type of artifact. Overall, the most
common type of artifacts are source code, setup, miscellaneous, and
archive, which are identi�ed in over 50% of the applications. The
least common type of artifacts are disk image and audio, which are
identi�ed in less than 5% of the applications.

“Num. of Files" (%) in Table 8 reports on the number (percent-
age) of artifacts from each category across all sampled applications.
There is a total of 87,619 software artifacts in the sample applica-
tions. We observe that documentation related artifacts make up
only 6.12% of all �les. Further more, design documents and require-
ment documents only make up 0.42% and 0.68% respectively. Setup
�les account for 3.57% of the total artifacts. As expected, source
code makes up 56.79% of the entire artifacts collection.

Focusing on documentation, we observe that 5.74% and 10.18%
of the projects contain design and requirement documents, respec-
tively. Taking into consideration that 4 projects contain both design
and requirement documents, the combination of projects that con-
tain either type makes up 14.88% of the sampled applications (22+39-
4=57). Although documentation related artifacts only accounts for
a small portion of the available artifacts, open-source projects can
still be a good resource for researchers for such artifacts.

RQ3 Summary: Using our automatic artifact classi�cation ap-
proach, we con�rm that open-source projects provides a variety
of software artifacts. Approximately 14.88% of the projects con-
tain either design or requirement documents.

4 RELATEDWORK
This section discusses relevant literature. Section 4.1 discusses re-
lated work using open-source software as a dataset, Section 4.2
discusses related work pertaining to the categorization of software
artifacts, and Section 4.3 discusses related work in text classi�cation.

4.1 Open-Source Software as a Dataset
Godfrey and Tu [18] focus on the evolution of open-source software
development and examine 96 releases of the Linux operating system
kernel. This study aims to compare the evolutionary narratives
of open-source with commercially developed systems. However,

only �les with “.c” and “.h” extensions are examined. Other source
artifacts such as con�guration �les and documentation are ignored.

Behnamghader et al. [2] introduce a framework for conducting
large-scale replicable empirical studies of architectural changes
across di�erent versions of 23 open-source software systems. The
�ndings of this work bring new insights about the frequency of
architectural changes in software systems.

Munaiah et al. [36] propose a framework that help researchers
to identify GitHub repositories which contain engineered software
projects. The proposed work de�nes dimensions that are used to
classify software engineered projects through validating the exis-
tence of such dimensions in GitHub repositories.

Tian et al. [48] propose a technique using LDA to automatically
categorize open-source applications. The proposed technique, called
LACT, is evaluated in two studies and the results show that LACT
is able to e�ectively and automatically categorize software systems
regardless of their programming language.

Vendomo et al. [51] conduct an empirical study aiming at identi-
fying and automatically detecting exceptions in open-source soft-
ware licenses by relying on machine learning. They analyze the
source code of 51K projects written in six programming languages
and identify 14 di�erent license exception types.

Zogaan et al. [56] present an empirical study and propose two
automated techniques to generate traceability training datasets
from technical programming websites and open-source software
repositories. The proposed techniques use both Web-Mining and
Big-Data Analysis to generate the training datasets and categorize
them based on tactic-related code-artifacts. In their Big-Data ap-
proach, they use machine learning classi�ers to detect tactic-related
�les that could be used as training datasets.

Caniell et al. [5] present a dataset that contains source code and
related metadata of FOSS history for the Debian operating system.
This dataset contains over 30 million code �les in C and C++ along
with their related metadata �les.

In addition, there are a number of projects in the area of mining
open-source software repositories [15, 55] with primarily focus
on studying the source code and coding issues. There is a limited
experimental research on using such resource to generate scienti�c
datasets with diverse artifacts.

Our study complement and advances existing work. We propose
an automated approach based on heuristics and machine learning
techniques to identify various types of software artifacts that could
assist researchers and practitioners in multiple sub-domains of
software engineering to �nd appropriate datasets that �t their need.

4.2 Categorization of Software Artifacts
Robles et al. [41] analyze source code artifacts from versioning
repositories beyond source code and provide insights into software
projects from both a technical and management point of view. Rob-
les et al. [42] propose a semi-automatic approach that determines
the availability and quantity of documentation and source code
comments in a libre software package. In both studies, only �le
extensions and names are utilized to identify the di�erent types
of �les. Our approach is complementary to this study since we
use �le content in addition to �le name and extension when classi-
fying artifacts. We use manually extracted features and machine
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Table 6: Performance of the classi�ers using ensemble learning and 10-fold cross-validation on the training dataset.

Classi�er Class Precision Recall F-Measure MCC ROC
Majority Vote Release Notes 0.85 0.84 0.84 0.81 0.90
(2*Naïve Bayes Multinomial, Contributors’ Guide 0.90 0.78 0.84 0.81 0.88
SMO Poly Kernel, List of Contributors 0.99 0.86 0.92 0.91 0.93
J48, and Random Forest) Design Document 0.74 0.51 0.60 0.59 0.75

License 0.98 1.00 0.99 0.99 1.00
Requirement Document 0.39 0.66 0.49 0.46 0.79
Setup Files 0.74 0.79 0.77 0.72 0.87

Micro Average 0.85 0.82 0.83 0.80 0.90
Macro Average 0.80 0.78 0.78 0.76 0.87

Table 7: Performance of the classi�ers using ensemble learning and 10-fold cross-validation on the testing dataset.

Classi�er Class Precision Recall F-Measure MCC ROC
Majority Vote Release Notes 0.50 0.80 0.62 0.54 0.82
(2*Naïve Bayes Multinomial, Contributors’ Guide 0.90 0.82 0.86 0.83 0.90
SMO Poly Kernel, List of Contributors 0.86 1.00 0.92 0.92 0.99
J48, and Random Forest) Design Document 1.00 0.40 0.57 0.62 0.70

License 1.00 0.90 0.95 0.94 0.95
Requirement Document 0.33 0.14 0.20 0.15 0.55
Setup Files 0.75 0.90 0.82 0.78 0.92

Micro Average 0.76 0.75 0.73 0.70 0.85
Macro Average 0.76 0.71 0.70 0.68 0.83

Table 8: Distribution of the di�erent types of software arti-
facts in the sampled projects.

Software Category Num. of % Num. of %
Artifacts Projects Files
Documentation Design Documents 22 5.74% 371 0.42%

List of Contributors 33 8.62% 134 0.15%
Requirement Documents 39 10.18% 592 0.68%
Contributors’ Guide 54 14.10% 389 0.44%
License 84 21.93% 259 0.30%
Release Notes 93 24.28% 489 0.56%
Setup Files 235 61.36% 3,130 3.57%

Subtotal 5,364 6.12%

Non- Disk Image 1 0.26% 4,209 4.80%
Documentation Audio 5 1.31% 83 0.09%

Project 25 6.53% 68 0.08%
Font 31 8.09% 201 0.23%
Application 32 8.36% 121 0.14%
Testing Code 92 24.02% 3,766 4.30%
Image 126 32.90% 10,212 11.66%
Source Code 217 56.66% 49,680 56.70%
Misc 236 61.62% 13,380 15.27%
Archive 236 61.62% 535 0.61%

Subtotal 82,255 93.88%

Total 87,619 100%

learning algorithms to classify documentation related artifacts thus
proposing a fully automated approach.

Gousios and Zaidman [20] introduce pullreqs, a dataset of almost
900 OSS GitHub projects and 350,000 pull requests that are used to
study the pull request distributed development model. The main
focus of their study is to understand the principles that guide pull-
based development. Do et al. [13] design and construct an infrastruc-
ture to support controlled experimentation with testing techniques.

The infrastructure includes artifacts (programs, versions, test cases,
faults, and scripts) that enable researchers to perform controlled
experimentation and replications. While these studies provide arti-
facts that can be used to improve the understanding of one aspect
of OSS development, we complement these works by automatically
detecting and categorizing multiple OSS artifacts, which can be
bene�cial to various OSS development activities.

Mirakhorli and Cleland-Huang [35] present an approach using
ML to discover architectural tactics in code. The ML classi�er is
trained using code snippets extracted from OSS systems to auto-
matically detect and categorize code-related �les that contain ten
common architectural tactics. Our study is not limited to a speci�c
artifact type. Instead, we categorize both documentation related
and non-documentation related artifacts, including but not limited
to code related �les.

Kalliamvakou et al. [26] conduct a study to understand the char-
acteristics of the repositories and users in GitHub. They analyze a
GHTorrent dump [17] to identify a set of perils that software engi-
neering researchers should consider when utilizing GitHub reposi-
tories in their studies. While this study focuses on the projects and
users characteristics, we analyze and classify software artifacts.

4.3 Text Classi�cation
Linares-Vásquez et al. [29] extract APIs used by applications as
attributes for categorization of their application domain and explore
the performance of �ve di�erent ML algorithms. The performance
of the algorithms when using API methods and packages as features
is compared to the performance of the algorithms when using terms
from source code. Results show that the accuracy when using API
methods and packages is as good as the accuracy when using terms
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from source code. The best results, i.e., 0.67 average precision and
0.67 average recall, are achieved using SVM with a linear kernel.

Abu-Nimeh et al. [1] explore the performance of six ML algo-
rithms for email text classi�cation. They report that RF and logistic
regression are among the top performing classi�ers on their dataset,
however all approaches achieve high performance. RF outperforms
all other classi�ers with an error rate of 7.72% when legitimate and
phishing emails are weighted equally. Logistic regression outper-
formed all classi�ers achieving the minimum weighted error rate
of 3.82% when applying cost-sensitive measures.

Ye et al. [54] explore the performance of Naïve Bayes, SVM, and
character based N-gram model for sentiment classi�cation on text-
based travel reviews. Their results indicate that SVM preforms the
best, however, on large datasets all three algorithms achieve an
accuracy of at least 0.80.

Pascarella and Bacchelli [37] propose a taxonomy and an au-
tomated approach using ML to classify comments in source code.
They use the Naïve Bayes Multinomial algorithm, which is shown
to achieve a weighted average TPR of 0.85 on the validation dataset
and 0.74 on a cross-project validation dataset.

Similarity, our approach for overall software artifact classi�ca-
tion achieves good performance, i.e., 0.82 weighted average recall
and 0.75 on unseen dataset.

5 THREATS TO VALIDITY
This section discusses threats to validity that can a�ect our study.

Threats to conclusion validity relate to issues that could a�ect
the ability to draw correct conclusion about relations between the
treatment and the outcome of an experiment. One issue related
to conclusion validity is the representativeness of sample used to
validate the availability of documentation for open-source projects.
We analyzed a random sample considering 95% con�dence level
and ± 5% margin of error. Another threat to validity might be
related to the identi�cation of categories for software artifacts. We
use Cohen’s kappa to ensure consistent rating between the two
coders. Lastly, we report results using appropriate diagnostics for
the performance of the ML algorithms, such as ROC and MCC and
when discussing �ndings we keep into account acceptable ranges
for ROC and MCC (i.e., ROC � 0.5 and MCC > 0).

Threats to internal validity concern the relation between the
independent and dependent variables and factors that could have
in�uenced the relation with respect to the causality. As explained
in Section 2.3.3, ML algorithms are trained with manual tuning of
some parameters. It is possible that better results could be obtained
by employing automatic parameter tuning tools, such as Auto-
WEKA [47]. This would simply mean that our results represent
a lower-bound. Another threat is the calibration of the threshold
used to identify �les with insu�cient information. Indeed, di�erent
values could have produced di�erent results and could have a�ected
the assessment of the proposed approach. Although the threshold is
experimentally determined, this does not guarantee that the choice
is optimal for the entire universe of software artifacts.

Threats to construct validity concern the relation between the-
ory and observation. In this study, such threats are mainly due to
measurement errors. As for precision and relative recall, the man-
ual validation could be a�ected by subjectiveness of the coders or

human error. If we conduct the experiment with di�erent coders,
the results might not be the same. To mitigate these threats, the
oracle was created by two persons independently and, in case of
di�erent classi�cation, a discussion, and if needed a third person
was asked to perform the classi�cation.

Threats to external validity concern the generalizability of the
�ndings outside the experimental settings. Potential threats to ex-
ternal validity in this study include the selection of sampled open-
source applications, which may not be representative of the studied
population. To minimize this threat, we aimed to extract applica-
tions of various size and programming languages from GitHub.
During the extraction process, we did not �lter out projects based
on project quality or project characteristics such as engineered
projects as de�ned by Munaiah et al. [36]. Thus, the availability
of artifacts in engineered projects might di�er from what we ob-
serve in our random sample. Another potential threat is the manual
nature of the feature creation process that could lead to over�t-
ting the features to a particular dataset. However, to mitigate this
threat we sample artifacts from over 300 projects which greatly
reduces the chance of over�tting features. Additionally, we test the
generalizability of our results on a second, unseen oracle, i.e., the
testing dataset, to ensure acceptable accuracy of the classi�cation
model on new data. One further issue is the size of the dataset we
used. Our results are reported on about 208 total data points (159
for training and validation, 59 for testing). The size of our dataset
might be considered small. However, it is tied to the manual e�ort
required to classify those software artifacts.

Threats to reliability validity concern the ability to replicate
a study with the same data and to obtain the same results. We
use open-source software projects whose source code is available.
Moreover, we provide all necessary details to replicate the analysis
in our online replication package [31].

6 CONCLUSION AND FUTUREWORK
This paper presents an automated approach to classify open-source
software artifacts. The proposed approach is rigorously evaluated
and results indicate that a combination of ML algorithms using
ensemble learning outperforms individual classi�cation techniques.
Our approach is applied on 383 randomly selected open-source
projects to investigate what types of software artifacts are generated
in open-source projects. Results of this empirical study indicate
that besides source code, around 14.88% of open-source projects
contain other forms of artifacts such as requirements and design
documents that are of interest to software engineering researchers.

Work-in-progress includes building an add-on for GitHub to
identify and visualize which artifacts are in place and which ones
are missing for a particular project. We envision that the add-on
can be useful to evaluate the quality of a project and to determine
whether it satis�es certain documentation standards. Additionally,
we will investigate the use of information retrieval approaches for
automatic feature extraction of Release Notes and Requirement
Document artifacts and we will construct a larger oracle to improve
the performance of the classi�ers. Finally, we plan to expand the
approach to other forms of artifacts and explore multi-label text
classi�cation techniques.
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