
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Linguistic Antipatterns: What They Are and How
Developers Perceive Them

Venera Arnaoudova · Massimiliano Di
Penta · Giuliano Antoniol

Received: date / Accepted: date

Abstract Antipatterns are known as poor solutions to recurring problems. For
example, Brown et al. and Fowler define practices concerning poor design or im-
plementation solutions. However, we know that the source code lexicon is part
of the factors that affect the psychological complexity of a program, i.e., factors
that make a program difficult to understand and maintain by humans. The aim of
this work is to identify recurring poor practices related to inconsistencies among
the naming, documentation, and implementation of an entity—called Linguistic
Antipatterns (LAs)—that may impair program understanding. To this end, we
first mine examples of such inconsistencies in real open-source projects and ab-
stract them into a catalog of 17 recurring LAs related to methods and attributes1.
Then, to understand the relevancy of LAs, we perform two empirical studies with
developers—30 external (i.e., not familiar with the code) and 14 internal (i.e., peo-
ple developing or maintaining the code). Results indicate that the majority of the
participants perceive LAs as poor practices and therefore must be avoided—69%
and 51% of the external and internal developers, respectively. As further evidence
of LAs’ validity, open source developers that were made aware of LAs reacted to
the issue by making code changes in 10% of the cases. Finally, in order to facilitate
the use of LAs in practice, we identified a sub-set of LAs which were universally

Venera Arnaoudova
Soccer Lab., DGIGL, Polytechnique Montréal
2900, boulevard Édouard-Montpetit
2700, chemin de la Tour
Montréal, (Québec) Canada, H3T 1J4
Tel.: +1-514-967-9434
Fax: +1-514-340-5139
E-mail: venera.arnaoudova@polymtl.ca

Massimiliano Di Penta
Department of Engineering, University of Sannio, Benevento, Italy
E-mail: dipenta@unisannio.it

Giuliano Antoniol
Soccer Lab., DGIGL, Polytechnique Montréal, Canada
E-mail: antoniol@ieee.org

1 This work is an extension of our previous paper [Arnaoudova et al., 2013].

2 Venera Arnaoudova et al.

agreed upon as being problematic; those which had a clear dissonance between
code behavior and lexicon.

Keywords Source code identifiers · Linguistic antipatterns · Empirical study ·
Developers’ perception

1 Introduction

There are many recognized bad practices in software development, known as code
smells and antipatterns [Brown et al., 1998a; Fowler , 1999]. They concern poor
design or implementation solutions, as for example the Blob, also known as God
class, which is a large and complex class centralizing the behavior of a part of the
system and using other classes simply as data holders. Previous studies indicate
that APs may affect software comprehensibility [Abbes et al., 2011] and possibly
increase change and fault-proneness [Khomh et al., 2009, 2012]. From a recent
study by Yamashita and Moonen [2013] it is also known that the majority of
developers are concerned about code smells.

Most often, documented bad practices deal with the design of a system or its
implementation—e.g., code structure. However, there are other factors that can
affect software comprehensibility and maintainability, and source code lexicon is
surely one of them.

In his theory about program understanding, Brooks [1983] considers identifiers
and comments as part of the internal indicators for the meaning of a program.
Brooks presents the process of program understanding as a top-down hypothesis-
driven approach, in which an initial and vague hypothesis is formulated—based on
the programmer’s knowledge about the program domain or other related domains—
and incrementally refined into more specific hypotheses based on the information
extracted from the program lexicon. While trying to refine or verify the hypoth-
esis, sometimes developers inspect the code in detail, e.g., check the comments
against the code. Brooks warns that it may happen that comments and code are
contradictory, and that the decision of which indicator to trust (i.e., comment
or code) primarily depends on the overall support of the hypothesis being tested
rather than the type of the indicator itself. This implies that when a contradic-
tion between code and comments occur, different developers may end up trusting
different indicators, and thus have different interpretations of a program.

The role played by identifiers and comments in source code understandabil-
ity has been also empirically investigated by several other researchers showing
that commented programs and programs containing full word identifiers are easier
to understand [Chaudhary and Sahasrabuddhe, 1980; Lawrie et al., 2006, 2007;
Shneiderman and Mayer , 1975; Takang et al., 1996; Woodfield et al., 1981].

For the reasons emerged from the above studies, researchers have developed
approaches to assess the quality of source code lexicon [Caprile and Tonella, 2000;
Lawrie et al., 2007; Merlo et al., 2003] and have provided a set of guidelines to
produce high-quality identifiers [Deissenbock and Pizka, 2005]. Also, in a previ-
ous work [Arnaoudova et al., 2013], we have formulated the notion of source code
Linguistic Antipatterns (LAs), i.e., recurring poor practices in the naming, doc-
umentation, and choice of identifiers in the implementation of an entity and we
defined a catalog of 17 types of LAs related to inconsistencies. The notion of

Linguistic Antipatterns: What They Are and How Developers Perceive Them 3

LAs builds on those previous works. In particular, we concur with Brooks [1983]
that inconsistencies may lead to different program interpretations by different pro-
grammers and some of these interpretation may be wrong, thus impairing program
understanding. An incorrect initial interpretation may impact the way developers
complete their tasks as their final solution will possibly be biased by this initial
interpretation. This cognitive phenomenon is known as anchoring and the diffi-
culty to move away (or to adjust) from the initial interpretation as the adjustment
bias. For example, Parsons and Saunders [2004] provide evidence of the existence
of the phenomenon in the context of reusing software code/design. Our conjecture
is that defining a catalog of LAs will increase developer awareness of such poor
practices and thus contributes to the improvement of the lexicon and program
comprehension.

An example of an LA, which we have named Attribute signature and comment
are opposite, occurs in class EncodeURLTransformer of the Cocoon2 project. The class
contains an attribute named INCLUDE NAME DEFAULT whose comment documents the
opposite, i.e., a “Configuration default exclude pattern”. Whether the pattern is
included or excluded is therefore unclear from the comment and name. Another
example of LA called “Get” method does not return occurs in class Compiler of the
Eclipse3 project where method getMethodBodies is declared. Counter to what one
would expect, the method does not either return a value or clearly indicate which
of the parameters will hold the result.

To understand whether such LAs would be relevant for software developers,
two general questions arise:

– Do developers perceive LAs as indeed poor practices?
– If this is the case, would developers take any action and remove LAs?

Indeed, although tools may detect instances of (different kinds of) bad practices,
they may or may not turn out to be actual problems for developers. For example,
by studying the history of projects Raţiu et al. [2004] showed that some instances
of antipatterns, e.g., God classes being persistent and stable during their life, are
considered harmless.

This paper aims at empirically answering the questions stated above, by con-
ducting two different studies. In Study I we showed to 30 developers an extensive
set of code snippets from three open-source projects, some of which containing
LAs, while others not. Participants were external developers, i.e., people that have
not developed the code under investigation, unaware of the notion of LAs. The
rationale here is to evaluate how relevant are the inconsistencies, by involving peo-
ple having no bias—neither with respect to our definition of LAs, nor with respect
to the code being analyzed. In Study II we involved 14 internal developers from
8 projects (7 open-source and 1 commercial), with the aim of understanding how
they perceive LAs in systems they know, whether they would remove them, and
how (if this is the case). Here, we first introduce to developers the definition of
the specific LA under scrutiny, after which they provide their perception about
examples of LAs detected in their project.

Overall, results indicate that external and internal developers perceive LAs
as poor practices and therefore should be avoided—69% and 51% of participants

2 http://cocoon.apache.org
3 http://www.eclipse.org

http://cocoon.apache.org
http://www.eclipse.org

4 Venera Arnaoudova et al.

in Study I and Study II, respectively. Interestingly, developers felt more strongly
about certain LAs. Thus, an additional outcome of these studies was a subset of
LAs that are considered to be the most problematic. In particular, we identify a
subset of LAs i) that are perceived as poor practices by at least 75% of the external
developers, ii) that are perceived as poor practices by all internal developers, or iii)
for which internal developers took an action to remove it. In fact, 10% (5 out of 47)
of the LAs shown to internal developers during the study have been removed in the
corresponding projects after we pointed them out. There are three LAs that both
external and internal developers find particularly unacceptable. Those are LAs
concerning the state of an entity (i.e., attributes) and they belong to the “says
more than what it does” (B) and “contains the opposite” (F) categories—i.e., Not
answered question (B.4), Attribute name and type are opposite (F.1), and Attribute
signature and comment are opposite (F.2). External developers found particularly
unacceptable (i.e., more than 80% of them perceived as poor or very poor) the
LAs with a clear dissonance between the code behavior and its lexicon—i.e., “Get”
method does not return (B.3), Not answered question (B.4), Method signature and
comment are opposite (C.2), and Attribute signature and comment are opposite
(F.2). The extremely high level of agreement on these LAs motivates the need for
a tool pointing out these issues to developers while writing the source code.

Paper structure. Section 2 provides an overview of the LA definitions [Ar-
naoudova et al., 2013] and tooling. Sections 3 describes the definition, design, and
planning of the studies. In Section 4 we detail the catalog of LAs while reporting
and discussing the results of the two studies. After a discussion of related work in
Section 6, Section 7 concludes the paper and outlines directions for future work.

2 Linguistic Antipatterns (LAs)

Software antipatterns—as they are known so far—are opposite to design patterns
[Gamma et al., 1995], i.e., they identify “poor” solutions to recurring design prob-
lems. For example, Brown’s 40 antipatterns describe the most common pitfalls in
the software industry [Brown et al., 1998b]. They are generally introduced by de-
velopers not having sufficient knowledge and–or experience in solving a particular
problem or misusing good solutions (i.e., design patterns). Linguistic antipatterns
[Arnaoudova et al., 2013] shift the perspective from source code structure towards
its consistency with the lexicon.

Linguistic Antipatterns (LAs) in software systems are recurring poor
practices in the naming, documentation, and choice of identifiers in the im-
plementation of an entity, thus possibly impairing program understanding.

The presence of inconsistencies can mislead developers—they can make wrong
assumptions about the code behavior or spend unnecessary time and effort to clar-
ify it when understanding source code for their purposes. Therefore, highlighting
their presence is essential for producing easy to understand code. In other words,
our hypothesis is that the quality of the lexicon depends not only on the quality of
individual identifiers but also on the consistency among identifiers from different
sources (name, implementation, and documentation). Thus, identifying practices
that result in inconsistent lexicon, and grouping them into a catalog, will increase
developer awareness and thus contribute to the improvement of the lexicon.

Linguistic Antipatterns: What They Are and How Developers Perceive Them 5

Table 1 LAs catalog: Definitions and examples.

A.1 “Get” - more than an accessor A getter that performs actions other than returning the corre-
sponding attribute without documenting it. Example: method
getImageData which, no matter the attribute value, every time
returns a new object (see Fig. 1).

A.2 “Is” returns more than a
Boolean

The name of a method is a predicate suggesting a true/false
value in return. However the return type is not Boolean but
rather a more complex type thus allowing a wider range of val-
ues without documenting them. Example: isValid with return
type int (see Fig. 6).

A.3 “Set” method returns

A set method having a return type different than void and
not documenting the return type/values with an appropriate
comment (see Fig. 7).

A.4
Expecting but not getting a sin-
gle instance

The name of a method indicates that a single object is re-
turned but the return type is a collection. Example: method
getExpansion returning List (see Fig. 9).

B.1 Not implemented condition
The comments of a method suggest a conditional behavior
that is not implemented in the code. When the implementa-
tion is default this should be documented (see Fig. 10).

B.2
Validation method does not
confirm

A validation method (e.g., name starting with “validate”,
“check”, “ensure”) does not confirm the validation, i.e., the
method neither provides a return value informing whether the
validation was successful, nor documents how to proceed to
understand (see Fig. 11).

B.3 “Get” method does not return

The name suggests that the method returns something
(e.g., name starts with “get” or “return”) but the return type
is void. The documentation should explain where the resulting
data is stored and how to obtain it (see Fig. 12).

B.4 Not answered question
The name of a method is in the form of predicate whereas the
return type is not Boolean. Example: method isValid with
return type void (see Fig. 13).

B.5 Transform method does not re-
turn

The name of a method suggests the transformation of an ob-
ject but there is no return value and it is not clear from the
documentation where the result is stored. Example: method
javaToNative with return type void (see Fig. 14).

B.6 Expecting but not getting a col-
lection

The name of a method suggests that a collection should be
returned but a single object or nothing is returned. Example:
method getStats with return type Boolean (see Fig. 15).

C.1
Method name and return type
are opposite

The intent of the method suggested by its name is in contra-
diction with what it returns. Example: method disable with
return type ControlEnableState. The inconsistency comes
from “disable” and “enable” having opposite meanings (see
Fig. 16).

C.2
Method signature and com-
ment are opposite

The documentation of a method is in contradiction with its
declaration. Example: method isNavigateForwardEnabled is
in contradiction with its comment documenting ”a back navi-
gation”, as “forward” and “back” are antonyms (see Fig. 17).

D.1 Says one but contains many

The name of an attribute suggests a single instance, while
its type suggests that the attribute stores a collection of ob-
jects. Example: attribute target of type Vector. It is unclear
whether a change affects one or multiple instances in the col-
lection (see Fig. 18).

D.2
Name suggests Boolean but
type does not

The name of an attribute suggests that its value is true or
false, but its declaring type is not Boolean. Example: attribute
isReached of type int[] where the declared type and values
are not documented (see Fig. 19).

E.1 Says many but contains one

The name of an attribute suggests multiple instances, but
its type suggests a single one. Example: attribute stats of
type Boolean. Documenting such inconsistencies avoids addi-
tional comprehension effort to understand the purpose of the
attribute (see Fig. 20).

F.1
Attribute name and type are
opposite

The name of an attribute is in contradiction with its type
as they contain antonyms. Example: attribute start of type
MAssociationEnd. The use of antonyms can induce wrong as-
sumptions (see Fig. 21).

F.2
Attribute signature and com-
ment are opposite

The declaration of an attribute is in contradiction with its doc-
umentation. Example: attribute INCLUDE NAME DEFAULT whose
comment documents an “exclude pattern”. Whether the pat-
tern is included or excluded is thus unclear (see Fig. 22).

6 Venera Arnaoudova et al.

We defined LAs and group them into categories based on a close inspection of
source code examples. We started by analyzing source code from three open-source
Java projects—namely ArgoUML, Cocoon, and Eclipse.

Initially, we randomly sampled a hundred files and analyzed the source code
looking for examples of inconsistencies of lexicon among different sources of iden-
tifiers (i.e., identifiers from the name, documentation, and implementation of an
entity). For each file, we analyzed the declared entities (methods and attributes)
by asking ourselves questions such as “Is the name of the method consistent with
its return type?”, “Is the attribute comment consistent with its name?”. Two of
the authors of this paper were involved in the process. The set of inconsistencies
examples that we found were then organized into an initial set of LAs. We iterated
several times over the sampling and coding process and refine the questions based
on the newly discovered examples. For example, “What is an inconsistent name for
a boolean return type?”, “Is void a consistent type for method isValid?”, “What
other types are inconsistent with method isValid?”, etc.

As the goal is to capture as many different lexicon inconsistencies as possible,
the sampling was guided by the theory (theoretical sampling Strauss [1987]), and
thus cannot be considered to be representative of the entire population of source
code entities. We stopped iterating over the sampling and coding process when
new examples of inconsistencies did not anymore modify the defined LAs and
their categories. Also, it is important to point out that during our analyses we did
not follow a thorough grounded-theory approach [Glaser , 1992; Strauss, 1987]—
i.e., we did not measure the inter-agreement at each iteration—as the process was
meant to identify possible inconsistencies for which we would gather developers’
perceptions. Thus, the agreement between the authors of this paper was a guid-
ance rather than a requirement. Nevertheless, similarly to grounded-theory, we
performed refinements to our initial categories.

Over the iterations LAs were refined, compared, and grouped into categories.
Categories were modified according to the new examples of inconsistencies, i.e., some
categories were combined, refined, or split to account for the newly defined LAs.
For instance, we ended up with a preliminary list of 23 types LAs for which we
abstracted the type of inconsistency they concern. At a very high level, all but 6 of
those 23 types LAs concerned inconsistencies where i) a single entity (method or
attribute) is involved, and ii) the behavior of the entity is inconsistent with what
its name or related documentation (i.e., comment) suggests, as it provides more,
says more, or provides the opposite. Thus, we discarded from this catalog those
LAs that did not obey the above two rules. An example of a discarded LAs from
the preliminary list is the practice consisting in the use of synonyms in the en-
tity signature—e.g., method completeResults(..., boolean finished), where the term
complete in the method name is synonym of finished (parameter). Similarly, we
discarded the following five cases of comment inconsistencies:

– Not documented or counter-intuitive design decision, e.g., using inheritance
instead of delegation.

– Parameter name in the comment is out of date.
– Misplaced documentation, e.g., entity documentation exists, but it is placed in

a parent class.
– The entity comment is inconsistent across the hierarchy.

Linguistic Antipatterns: What They Are and How Developers Perceive Them 7

– Not documented design pattern. Previous work has proposed approaches to
document design patterns [Torchiano, 2002], and has shown that design pat-
terns’ documentation helps developers to complete maintenance tasks faster
and with fewer errors [Prechelt et al., 2002].

The fact that we discarded the above practices from the current catalog does
not mean that we consider them any less poor. On the contrary, we believe that
further investigation in different projects may result in discovering other related
poor practices that can be abstracted into new categories of inconsistencies, thus
extending the current catalog.

After pruning out the six types described above, the analysis process re-
sulted in 17 types of LA, grouped into six categories, three regarding behavior—
i.e., methods—and three regarding state—i.e., attributes. For methods, LAs are
categorized into methods that (A) “do more than they say”, (B) “say more than
they do”, and (C) “do the opposite than they say”. Similarly, the categories for
attributes are (D) “the entity contains more than what it says”, (E) “the name
says more than the entity contains”, and (F) “the name says the opposite than
the entity contains”. Table 1 provides a summary of the defined LAs. We further
detail the LAs during the qualitative analysis of the results (Section 4.3).

We implemented the LAs detection algorithms in an offline tool, named LAPD
(Linguistic Anti-Pattern Detector), for Java source code [Arnaoudova et al., 2013];
for the purpose of this work, we extended the initial LAPD to analyze C++.
LAPD analyzes signatures, leading comments, and implementation of program
entities (methods and attributes). It relies on the Stanford natural language parser
[Toutanova and Manning , 2000] to identify the Part-of-Speech of the terms con-
stituting the identifiers and comments and to establish relations between those
terms. Thus, given the identifier notVisible, we are able to identify that ‘visible’
is an adjective and that it holds a negation relation with the term ‘not’.

Finally, to identify semantic relations between terms LAPD uses the WordNet
ontology [Miller , 1995]. Thus, we are able to identify that ‘include’ and ‘exclude’
are antonyms.

Consider for example the code shown in Fig. 1. To check whether it contains an
LA of type “Get” - more than an accessor (A.1) LAPD first analyses the method
name. As it follows the naming conventions for accessors—i.e., starts with ‘get’—
LAPD proceeds and searches for an attribute named imageData of type ImageData

defined in class CompositeImageDescriptor. The existence of the attribute indicates
that the implementation of getImageData would be expected to satisfy the expecta-
tions from an accessor, i.e., return the value of the corresponding attribute. Thus,
LAPD analyses the body of getImageData and reports the method as an example
of “Get” - more than an accessor (A.1) as it contains a number of additional
statements before returning the value of imageData. Indeed, one can note that the
value of the attribute is always overridden (line 69) which is not expected from
an accessor except if the value is null—as for example the Proxy and Singleton
design patterns). Further details regarding the detection algorithms of LAs can be
found in Appendix A.

8 Venera Arnaoudova et al.

Fig. 1 LAPD Checkstyle plugin: “Get” - more than an accessor (A.1).

For Java source code, we also made available an online version of LAPD4

integrated into Eclipse as part of the Eclipse Checkstyle Plugin5. Checkstyle6 is
a tool helping developers to adhere to coding standards, which are expressed in
terms of rules (checks), by reporting violations of those standards. Users may
choose among predefined standards, e.g., the Sun coding conventions7, or define
their owns. Fig. 1 shows a snapshot of a code example and an LA, of type “Get”
- more than an accessor (A.1), reported by the LAPD Checkstyle Plugin4

detected in the example. After analyzing the entity containing the reported LA,
the user may decide to resolve the inconsistency or disable the warning report for
the particular entity.

3 Experimental design

Before studying the perception of developers, it is important to study the preva-
lence of LAs. Section 3.1 provides details about our preliminary study on the
prevalence of LAs. Next, we report the definition, design, and planning of the two
studies we have conducted with external (Section 3.2) and internal (Section 3.3)
developers. To report the studies we followed the general guidelines suggested by
Wohlin et al. [2000], Kitchenham et al. [2002], and Jedlitschka and Pfahl [2005].

4 http://www.veneraarnaoudova.ca/tools
5 http://eclipse-cs.sourceforge.net/
6 http://checkstyle.sourceforge.net/
7 http://www.oracle.com/technetwork/java/codeconv-138413.html

http://www.veneraarnaoudova.ca/tools
http://eclipse-cs.sourceforge.net/
http://checkstyle.sourceforge.net/
http://www.oracle.com/technetwork/java/codeconv-138413.html

Linguistic Antipatterns: What They Are and How Developers Perceive Them 9

Table 2 Preliminary study - Objects characteristics.

Project Size (LOC) Language

Apache Maven9 3.0.5 71 K Java
Apache OpenMeetings10 2.1.0 52 K Java
GanttProject11 57 K Java
boost12 1.53.0 1.9 M C++
BWAPI13 118 K C++
CommitMonitor14 1.8.7.831 148 K C++
OpenCV15 544 K Java, C++

3.1 Prevalence of LAs

The goal of our preliminary study is to investigate the presence of LAs in software
systems, with the purpose of understanding the relevance of the phenomenon.
The quality focus is software comprehensibility that can be hindered by LAs. The
perspective is of researchers interested to develop recommending systems aimed at
detecting the presence of LAs and suggesting ways to avoid them. Specifically, the
preliminary study aims at answering the following research question:

RQ0: How prevalent are LAs? We investigate how relevant is the phenomenon of
LAs in the studied projects.

Experiment design: For each LA we report the occurrences in the studied
projects. We also report the percentage of the programming entities in which an
LA occurs with respect to the population for which the LA been defined. Finally,
we report the relevance of each LA with respect to the total entity population of
its kind. For example, for “Get” - more than an accessor (A.1) we report the the
number of occurrences, the percentage of the occurrences with respect to the num-
ber of accessors, and the percentage of the occurrences with respect to all methods.

Objects: Using convenience sampling [Shull et al., 2007], we select seven open-
source Java and C++ projects Table 2 shows the projects’ characteristics8. We
have chosen projects from various application domains, with different size, differ-
ent programming language, and different number of developers.

Data collection: For this study, we simply downloaded the source code archives
of the considered system releases (Table 2), and analyzed them using the LAPD
tool with the aim of identifying LAs.

Next, we report the definition, design, and planning of the two studies we
have conducted with external (Section 3.2) and internal (Section 3.3) developers.
Both studies were designed as online questionnaires. A replication package is avail-
able16. It contains (i) all the material used in the studies, i.e., instructions, ques-

8 For projects where we did not provide a version, we used version control (accessed on
31/05/2013).
16 http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-data/lapd-rep-pckg.zip

http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-data/lapd-rep-pckg.zip

10 Venera Arnaoudova et al.

tionnaires, and LA examples, and (ii) working data sets containing anonymized
results for both studies. We do not disclose information about participants’ ability
and experience.

3.2 Study I (SI)—External Developers

The goal of the study is to collect opinions about code snippets containing LAs from
the perspective of external developers, i.e., people new to the code containing LAs—
with the purpose of gaining insights about developers’ perception of LAs. The
feedback of external developers will help us to understand how LAs are perceived
by developers who are new to the particular code, as it is often the case when
developers join a new team or maintain a large system they are not entirely familiar
with. Specifically, the study aims at answering the following research questions:

RQ1: How do external developers perceive code containing LAs? We investigate
whether developers actually recognize the problem and in such case how im-
portant they believe the problem is.

RQ2: Is the perception of LAs impacted by confounding factors? We investigate
whether results of RQ1 depend on participant’s i) main programming language
(for instance Java versus C++, as the LAs were originally defined for Java),
ii) occupation (i.e., professionals or students), and iii) years of programming
experience.

In the following, we report details of how the study has been planned and
conducted.

Experiment design: The study was designed as an online questionnaire esti-
mated to take about one hour for an average of two and a half minutes per code
snippet. However, participants were free to take all the necessary time to com-
plete the questionnaire. The use of an online questionnaire was preferred over in
person interview, as it is more convenient for the participants. Participants were
free to decide when to fill the questionnaire and in how many steps to complete
it—i.e., participants may decide to complete the questionnaire in a single session
or to stop in between questions and to resume later. To avoid biasing the partic-
ipants, we also consider as part of the questionnaire 8 code snippets that do not
contain any LA. Thus, we ask participants to analyze 25 code snippets (17 being
examples of LAs, and 8 not containing any LA), and to evaluate the quality of
each example comparing naming, documentation, and implementation. Ideally,
we would have preferred to evaluate an equal number of code snippets with and
without LAs. This, however, would have increased the required time with more
than 20 minutes and increased the chances that participants do not complete the
survey. Therefore, we decided to decrease the number of code snippets without
LAs by half (compared to the number of code snippets with LAs).

We (the authors) selected examples covering the set of LAs from the analyzed
projects that in our opinion are representative of the studied LAs. In particular,
we used the examples from our previous work as the study was performed before
the proceedings were publicly available.

For each code snippet, we formulated a specific question, trying to avoid any
researcher bias on whether the practice is good or poor. Thus, for example, when

Linguistic Antipatterns: What They Are and How Developers Perceive Them 11

showing the code snippet of method getImageData (used in Fig. 1) corresponding to
the example of “Get” - more than an accessor, we asked participants to provide
their opinion on the practice consisting of using the word “get” in the name of the
method with respect to its implementation. Note that if the question does not indi-
cate what aspect of the snippet the participants are expected to evaluate, there is a
high risk that the participants evaluate an unrelated aspect—e.g., performance or
memory related. However, specific questions are subject to the hypothesis guess-
ing bias thus participants may evaluate as poor practices all code snippets as they
may guess that this is what is expected. This is why inserting code snippets that
do not contain LAs is a crucial part of the design. To compare the scores given by
developers to code snippets that contain LAs and those that do not, we perform
a Mann-Whitney test.

To minimize the order/response bias, we created ten versions of the ques-
tionnaire where the code snippets appear in a random order. Participants were
randomly assigned to a questionnaire. To achieve a design as balanced as possible,
i.e., equal number of participants for each questionnaire, we invited participants
through multiple iterations. That is, we sent an initial set of invitations to an equal
number of participants. After a couple of days, we sent a second set of invitations
assigning such additional participants to the questionnaire instances that received
the lowest number of responses.

Objects: For the purpose of the study, we choose to evaluate LA instances de-
tected and manually validated in our previous work [Arnaoudova et al., 2013]. Such
LAs have been detected in 3 Java software projects, namely ArgoUML17 0.10.1
(82 KLOC) and 0.34 (195 KLOC), Cocoon18 2.2.0 (60 KLOC), and Eclipse19 1.0
(475 KLOC).

Participants: Ideally, a target population—i.e., the individuals to whom the sur-
vey applies—should be defined as a finite list of all its members. Next, a valid
sample is a representative sample of the target population [Shull et al., 2007].
When the target population is difficult to define, non-probabilistic sampling is
used to identify the sample. In this study, the target population being all soft-
ware developers, it is impossible to define such list. We selected participants using
convenience sampling. We invited by e-mail 311 developers from open-source and
industrial projects, graduate students and researchers from the authors’ institu-
tions as well as from other institutions. 31 developers completed the study and
after a screening procedure (see Section 3.2), 30 participants remained—11 pro-
fessionals, and 19 graduate students, resulting in a response rate close to 10%—as
expected [Groves et al., 2009]. Participants were volunteers and they did not re-
ceive any reward for the participation to the study. We explicitly told them that
anonymity of results was preserved, and so we did.

Table 3 provides information on participants’ programming experience and
Fig. 2 shows their native language and the country they live in.

Study procedure: We did not introduce participants to the notion of LAs before
the study. Instead, we informed them that the task consists of providing their
opinion of code snippets.

17 http://argouml.tigris.org
18 http://cocoon.apache.org
19 http://www.eclipse.org

http://argouml.tigris.org
http://cocoon.apache.org
http://www.eclipse.org

12 Venera Arnaoudova et al.

Table 3 Study I—programming experience of the participants.

of Programming
participants experience (years)

< 5 ≥ 5

Graduate students 19 9 10
Professionals 11 1 10

Overall 30 10 20Table 1

Canada Canada 22 0.733333333333333

Italy Italy 3 0.1

Other 5 0.166666666666667

The
Netherland
s The Netherlands 1

0.0333333333333333

USA USA 2 0.0666666666666667

France France 2 0.0666666666666667

30

French French 12 0.375

English English 4 0.125

Arabic Arabic 3 0.09375

Italian Italian 3 0.09375

Other Other 10 0.3125

Bengali 2 0.0625

Chinese 2 0.0625

Asian 1 0.03125

Bulgarian 1 0.03125

Farsi 1 0.03125

Amharic 1 0.03125

Romanian 1 0.03125

Spanish 1 0.03125

32

Native language

French
English
Arabic
Italian
Other

Percentage
0% 10% 20% 30% 40%

31%
9%
9%
13%

38%

Country

Canada

Italy

Other

Percentage
0% 10% 20% 30% 40% 50% 60% 70% 80%

17%

10%

73%

�1

Fig. 2 Study I—native language and country of the participants.

For each code snippet—containing LAs or not—we asked participants the five
questions reported in Table 4. With SI-q1 participants judge the quality of the
practice on a 5-point Likert scale [Oppenheim, 1992], ranging between ‘Very poor’
and ‘Very good’. The purpose of SI-q2 is to ensure that the participants provide
their judgement for the practice targeted by the question. For both SI-q4 and
SI-q5, we provide predefined options, to decrease the effort and ease the analysis,
however we left space in the form to provide a customized answer. In addition,
for each code snippet, we also allow participants to share any additional comment
they would make. At any point, participants are free to decide not to answer a
question by selecting the option ‘No opinion’.

Data Collection: We collected 31 completed questionnaires. Before proceeding
with the analysis, we applied the following screening procedure: For each LA we
remove subjects who chose ’No opinion’ as answer to SI-q1.
The collected answers being in nominal and ordinal scales, standard outlier re-
moval techniques do not apply here. Thus, we first sought for inconsistent answers
between questions SI-q1 and SI-q3, i.e., between the quality of the code snippet
and whether an action should be undertaken. Although one may judge a code
snippet as ’Poor’ but believes that no action should be undertaken, we fear that
participants providing high number of such combinations may have misunderstood
the questions. We intentionally sought for participants providing high number of
such combinations (> 75%), resulting in removing one participant.
Then, we individually analyze the justification, i.e., answers of SI-q2, and we
remove the answer of a participant for an LA if it is clear that the participant
judge an aspect different from the one targeted by the LA. For example, when a
participants are asked to give their opinion on the use of conditional sentence in
comments and no conditional statement in method implementation, participant
providing the following justification is removed for the particular LA: “the method
name is well chosen and is well commented too”. Thus, the number of obtained

Linguistic Antipatterns: What They Are and How Developers Perceive Them 13

Table 4 Study I - Questionnaire.

Question Possible answers

SI-q1: You judge this practice as: (Single choice)
Very poor
Poor
Neither poor nor good
Good
Very good
No opinion

SI-q2: Please justify (Free-form)

SI-q3: Would you undertake (Single choice)
an action with respect to the Change
practice? Keep it ‘as is’

No opinion

SI-q4: Illustrate the kind of (Multiple choice)
action you would undertake Comments (add/remove/modify)
(when this is the case). Renaming

Implementation (add/remove/modify)
Other

SI-q5: Explain the reason why (Multiple choice)
you would not undertake any It is a common practice
action (when this is the case). Naming and functionality are consistent

Comments and naming are consistent
Comments and functionality are consistent
Other

answers for each kind of LA varies between 25 and 30, as it can be noticed from
Fig. 5.

3.3 Study II (SII)—Internal Developers

The goal of this study is to investigate the perception of LAs from the perspective
of internal developers, i.e., those contributing to the project in which LAs occur.
Internal developers will provide us not only with their opinion about LAs but also
with insights on the typical actions they are willing to undertake, to correct the
existing inconsistencies and possibly help us to understand what causes LAs to
occur. The context consists of examples of code, selected from projects to which the
surveyed developers contribute. To extend the external validity of the results, for
this study, we considered projects written in two different programming languages,
i.e., Java and C++. The study aims at answering the following research questions:

RQ3: How do internal developers perceive LAs? This research question is similar
to RQ1 of Study I, however here we are interested in the perception of devel-
opers familiar with the code containing LAs, i.e., of people who contributed to
it.

14 Venera Arnaoudova et al.

RQ4: What are the typical actions to resolve LAs? Other than the opinion on the
practices described by LAs, we investigate whether developers are willing to
undertake actions to correct the suggested inconsistencies.

RQ5: What causes LAs to occur? We are interested to understand under what
circumstances LAs appear to better cope with them.

Experiment design: The study was designed as an online questionnaire. The
number of LAs was selected so that the questionnaire requires approximately 15
minutes to be completed, and therefore ensures a high response rate from internal
developers. As in Study I, the time was simply indicative, i.e., participants are free
to take all the necessary time to complete the questionnaire. As LAs were related
to methods having different size and complexity, the questionnaires contained be-
tween 5 and 6 examples, i.e., not always the same number. Thus, each participant
evaluates only a subset of the LAs. We, the authors, selected examples of LAs
from the analyzed projects that in our opinion are representative of the studied
LAs. We selected the examples in a way to have higher diversity, i.e., so that the
study includes examples of all 17 types of LAs.

Objects: To select the projects for this study we also used a convenience sam-
pling. We consider LAs extracted from 8 software projects, specifically 1 indus-
trial, closed-source project, namely MagicPlan20, and 7 open-source projects—
i.e., the projects used in the preliminary study (see Table 2). The projects have
different size and belong to different domain, ranging from utilities for develop-
ers/project managers (e.g., Apache OpenMeetings, GanttProject, commitMonitor,
Apache Maven) to APIs (Boost, BWAPI, and OpenCV) or mobile applications
(MagicPlan). We chose more projects than in Study I, in order to obtain a larger
external validity from developers belonging to different projects (including a com-
mercial one), and in order to consider both Java and C++ code.

Participants: The study involved 14 developers from the projects mentioned
above. As for the distribution across projects, one developer per project partic-
ipated in the study, except for Boost, for which 3 developers participated, and
for BWAPI, for which 4 developers participated. Such 14 developers are the re-
spondents from an initial set of 50 ones we invited to participate, resulting in a
response rate of 28%. Invited participants were committers whose e-mails were
available in the version control repository of the project. Also in this case, partic-
ipants were volunteers and did not receive any reward. Similarly to the previous
study, anonymity of results was preserved.

Study procedure: We showed to participants examples of LAs detected in the
system they contribute to. For each example, we first provided participants with
the definition of the corresponding LA, and then we asked them to provide an
opinion about the general practice—i.e., question SII-q0 “How do you consider
the practice described by the above Linguistic Antipattern?”—using, again, a 5-
point Likert scale. Then, we asked participants to provide indications about the
specific instance of LA by asking the questions shown in Table 5.

20 http://www.sensopia.com/english/index.html

http://www.sensopia.com/english/index.html

Linguistic Antipatterns: What They Are and How Developers Perceive Them 15

Table 5 Study II - Questionnaire.

Question Possible answers

SII-q1: How familiar are you (Single choice)
with this code? I wrote it

I didn’t write it but I came across this code
Don’t remember seeing it before
Other

SII-q2: Why the inconsistency (Multiple choice)
occurred, i.e., what are the causes? Evolution (it was consistent initially)

Didn’t give it enough thought initially
Copy/paste and forgot to change
Reuse without changing since it is working
Other

SII-q3: Equivalent to SI-q3 Equivalent to SI-q3

SII-q4: Equivalent to SI-q4 (Free-form)

SII-q5: Equivalent to SI-q5 Equivalent to SI-q5

Data Collection: We collected responses of 14 developers regarding 47 unique
examples of all types of LAs except C.221. The collected answers represent 72 data
points, where each data point is a unique combination of a particular example
(instance) of an LA and a developer who evaluated it.

4 Developers’ Perception of LAs

In this section we present the results of our studies. First, in Section 4.1 we report
the results of our preliminary study on the prevalence of LAs. Next, we present
the results of the two studies on developers’ perceptions of LAs providing both
quantitative (Section 4.2) and qualitative (Section 4.3) analyses.

4.1 Prevalence of LAs

RQ0: How prevalent are LAs?

Table 6 shows the number of detected instances of LAs per project and per kind
of LA. Based on previous evaluation on a subset of those systems, LAPD has an
average precision of 72% (95% confidence level and a confidence interval of ±10%).
As the goal of this work is to evaluate developers’ perception of LAs we did not
re-evaluate the precision but rather manually validated a subset of the detected
examples to assure that they are indeed representative of LAs.

Table 7 shows how relevant is the phenomenon in the studied projects. For
each LA we report its relevance with respect to the population for which it has
been defined as well as its relevance with respect to the total entity population
of its kind. For example, the first row of Table 7—“Get” - more than an acces-
sor (A.1)—shows that such complex accessors represent 2.65% of the accessors and

21 None of the questionnaires containing examples of type C.2 was answered.

16 Venera Arnaoudova et al.

Table 6 LAs : Detected occurrence in the studied projects.

A
rg

o
U

M
L

0
.1

0
.1

A
rg

o
U

M
L

0
.3

4

C
o
co

o
n

2
.2

.0

E
c
li

p
se

1
.0

A
p
a
c
h
e

M
a
v
e
n

3
.0

.5

A
p
a
c
h
e

O
p
e
n

M
ee

ti
n

g
s

2
.1

.0

G
a
n

tt
P

ro
je

c
t

bo
o
st

1
.5

3
.0

B
W

A
P

I

C
o
m

m
it

M
o
n

it
o
r

1
.8

.7
.8

3
1

O
p
e
n

C
V

Total

A.1 “Get” - more than an
accessor

0 2 1 15 6 2 2 0 0 1 36 65

A.2 “Is” returns more than
a Boolean

2 0 4 26 1 0 5 137 2 36 33 246

A.3 “Set” method returns 4 30 6 53 314 29 9 6 73 50 67 641

A.4
Expecting but not get-
ting a single instance

7 3 8 33 40 78 42 16 0 0 5 232

B.1 Not implemented condi-
tion

20 28 43 232 2 1 1 1 0 9 3 340

B.2
Validation method does
not confirm

1 8 11 235 27 1 0 297 4 18 19 621

B.3 “Get” method does not
return

1 3 2 57 17 5 3 0 0 0 0 88

B.4 Not answered question 0 2 0 34 0 0 1 5 0 0 3 45

B.5 Transform method does
not return

0 86 15 44 1 4 0 46 11 24 177 408

B.6
Expecting but not get-
ting a collection

8 39 12 135 14 27 19 12 55 3 16 340

C.1
Method name and re-
turn type are opposite

0 0 0 6 0 1 2 15 2 0 0 26

C.2
Method signature and
comment are opposite

7 20 12 243 7 68 8 55 44 288 105 857

D.1
Says one but contains
many

15 92 42 103 42 31 102 1272 219 47 825 2790

D.2
Name suggests Boolean
but type does not

14 13 21 138 9 25 11 89 171 151 194 836

E.1 Says many but contains
one

45 117 24 116 13 7 6 305 77 388 680 1778

F.1
Attribute name and
type are opposite

1 0 0 0 0 0 2 528 0 5 5 541

F.2
Attribute signature and
comment are opposite

1 0 3 19 0 1 0 9 3 88 94 218

126 443 204 1489 493 280 213 2793 661 1108 2262 10072

0.05% of all methods. By looking at the table, the percentage of LAs instances may
appear rather low (Min.: 0.02%; 1st Qu.: 0.17%; Median: 0.26%; Mean: 0.61%; 3rd
Qu.: 0.65%; Max.: 3.40%). However, in their work on smell detection using change
history information Palomba et al. [2013] provide statistics about the number of
actual classes involved in 5 types of code smells in 8 Java systems; the percentages
of affected classes are below 1% for each type of smell, thus somewhat consistent
with our findings—although a direct comparison is difficult (due to the different
types of entities) the numbers can be taken as a rough indication. Slightly higher
are the statistics provided by Moha et al. [2010] in which for 10 systems the per-
centage of affected classes for 4 design smells are as follows: Blob: 2.8%, Functional
Decomposition: 1.8%, Spaghetti Code: 5.5%, and Swiss Army Knife: 3.9%.

Linguistic Antipatterns: What They Are and How Developers Perceive Them 17

Table 7 LAs : Relevance of the phenomenon in the studied projects.

Relevance of the
phenomenon

Considered population
Relevance with re-
spect to the entities
of the same kind

A.1 “Get” - more than an
accessor

2.65% (65/2457) getters 0.05% (65/129984)

A.2
“Is” returns more than
a Boolean

7.44% (246/3307)
methods starting with
’is’

0.19% (246/129984)

A.3 “Set” method returns 10.95% (641/5855) methods starting with
’set’

0.49% (641/129984)

A.4
Expecting but not get-
ting a single instance

1.72% (232/13527)
methods expecting sin-
gle instance to be re-
turned

0.18% (232/129984)

B.1
Not implemented condi-
tion

6.39% (340/5317) methods having a docu-
mented condition

0.26% (340/129984)

B.2
Validation method does
not confirm

69.31% (621/896) validation method 0.48% (621/129984)

B.3 “Get” method does not
return

0.52% (88/17065)
methods whose name
suggest that a result will
be returned

0.07% (88/129984)

B.4 Not answered question 1.19% (45/3783)
methods whose name
suggest Boolean value as
a result

0.03% (45/129984)

B.5 Transform method does
not return

19.33% (408/2111) transform method 0.31% (408/129984)

B.6
Expecting but not get-
ting a collection

23.35% (340/1456)
methods whose name
suggest that a collection
is returned

0.26% (340/129984)

C.1
Method name and re-
turn type are opposite

0.02 % (26/129984) methods 0.02% (26/129984)

C.2
Method signature and
comment are opposite

2.53% (857/33910) documented methods 0.66% (857/129984)

D.1
Says one but contains
many

5.98%(2790/46624)

the number of attributes
whose name suggests
that it contains a single
object

3.41% (2790/81886)

D.2
Name suggests Boolean
but type does not

64.31% (836/1300)

then number of at-
tributes whose name
suggest that it contains
a boolean value

1.02% (836/81886)

E.1 Says many but contains
one

69.53% (1778/2557)
attributes whose names
suggest plural

2.17% (1778/81886)

F.1
Attribute name and
type are opposite

0.66% (541/81886) attributes 0.66% (541/81886)

F.2
Attribute signature and
comment are opposite

1.18% (218/18498) documented attributes 0.27% (218/81886)

Moreover, when we consider only the relevant population, the phenomenon
appears to be sufficiently important to justify our interest (Min.: 0.02%; 1st Qu.:
1.19%; Median: 5.98%; Mean: 16.89%; 3rd Qu.: 19.33%; Max.: 69.53%).

In the rest of this section we present the results of both studies providing both
quantitative (Section 4.2) and qualitative (Section 4.3) analyses.

4.2 Quantitative analysis

Quantitative analysis pertain all RQs from RQ1 to RQ5. In RQ1 and RQ2
we report the results from the study with external developers, i.e., Study I, while

18 Venera Arnaoudova et al.

●

●

●

●

●

● ● ●

G.1 G.2 G.3 G.4 G.5 G.6 G.7 G.8

Very poor

Poor

Neither poor nor good

Good

Very good

10 Venera Arnaoudova et al.

●

●

●

●

●

● ● ●

G.1 G.2 G.3 G.4 G.5 G.6 G.7 G.8

Very poor

Poor

Neither poor nor good

Good

Very good

Fig. 2 Violin plots representing how participants perceive examples without LAs.

●

● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

A.1 A.2 A.3 A.4 B.1 B.2 B.3 B.4 B.5 B.6 C.1 C.2 D.1 D.2 E.1 F.1 F.2

Very poor

Poor

Neither poor nor good

Good

Very good

●

● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

A.1 A.2 A.3 A.4 B.1 B.2 B.3 B.4 B.5 B.6 C.1 C.2 D.1 D.2 E.1 F.1 F.2

Very poor

Poor

Neither poor nor good

Good

Very good

●

● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

A.1 A.2 A.3 A.4 B.1 B.2 B.3 B.4 B.5 B.6 C.1 C.2 D.1 D.2 E.1 F.1 F.2

Very poor

Poor

Neither poor nor good

Good

Very goodVery
Good

Good

Poor

Very
Poor

Neither

Tuesday, 10 September, 13

Fig. 3 Violin plots representing how participants perceive LAs.

between the lower and upper quartiles; a thin line is drawn between the lower and
upper tails. Overall, if we consider all LAs, 69% of the participants perceive LAs
as ‘Poor’ or ‘Very Poor’ practices. However, as Figure 3 shows, the perception dis-
tribution varies among di↵erent LAs. For instance, boxplots—i.e., the inner lines
of violin plots—for A.3 (“Set” method returns), B.1 (Not implemented condition),
B.3 (“Get” method does not return), B.4 (Not answered question), C.2 (Method
signature and comment are opposite), and F.2 (Attribute signature and comment
are opposite) have lower quartile at ‘Very Poor’, median at ‘Poor’, and, for all of
them except B.1, higher quartile at ‘Poor’.

We also observe that the perception of B.6 (Expecting but not getting a collec-
tion), D.2 (Name suggests Boolean but type does not), E.1 (Says many but contains
one), F.1 (Attribute name and type are opposite) has little variability and is gen-
erally ‘Poor’.

On the contrary, the most controversial LAs are A.1 (“Get” - more than an
accessor) and A.2 (“Is” returns more than a Boolean), with lower and higher
quartiles being at ‘Poor’ and ‘Good’ respectively. Other controversial LAs are
A.4 (Expecting but not getting a single instance), B.2 (Validation method does not
confirm), B.5 (Transform method does not return), C.1 (Method name and return
type are opposite), D.1 (Says one but contains many), with lower and higher
quartiles being at ‘Poor’ and ‘Neither poor nor good’ respectively.

In addition to violin plots, we show proportions of the LA perception by group-
ing, on the one hand, ‘Poor’ and ‘Very Poor’ judgements, and on the other hand,
‘Good’ and ‘Very Good’ ones. Results are reported in Figure 4, where we sort
LAs based on the proportion of participants that perceive them as ‘Poor’ or ‘Very
Poor’. We observe that, for all but three LAs, majority of participants perceive
LAs as ‘Poor’ or ‘Very Poor’. The three exceptions are A.1 (“Get” - more than an

G.1 G.2 G.3 G.4 G.5 G.6 G.7 G.8

Fig. 3 Violin plots representing how participants perceive examples without LAs.

●

● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

A.1 A.2 A.3 A.4 B.1 B.2 B.3 B.4 B.5 B.6 C.1 C.2 D.1 D.2 E.1 F.1 F.2

Very poor

Poor

Neither poor nor good

Good

Very good

●

● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

A.1 A.2 A.3 A.4 B.1 B.2 B.3 B.4 B.5 B.6 C.1 C.2 D.1 D.2 E.1 F.1 F.2

Very poor

Poor

Neither poor nor good

Good

Very good

●

● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

A.1 A.2 A.3 A.4 B.1 B.2 B.3 B.4 B.5 B.6 C.1 C.2 D.1 D.2 E.1 F.1 F.2

Very poor

Poor

Neither poor nor good

Good

Very goodVery
Good

Good

Poor

Very
Poor

Neither

Tuesday, 10 September, 13

Fig. 4 Violin plots representing how participants perceive LAs.

in RQ3 to RQ5 we report the results from the study with internal developers,
i.e., Study II.

RQ1: How do external developers perceive code containing LAs?

We first analyzed the developers’ perception of examples without LAs. Fig. 3
shows violin plots [Hintze and Nelson, 1998] depicting the developers’ perception of
examples without LAs. Violin plots combine boxplots and kernel density functions,
thus providing a better indication of the shape of the distribution. The dot inside a
violin plot represents the median; a thick line is drawn between the lower and upper
quartiles; a thin line is drawn between the lower and upper tails. As expected, those
examples are perceived as having a median ‘Good’ quality (1st quartile: ‘Neither
good nor poor’, median: ‘Good’, 3rd quartile: ‘Very good’).

Fig. 4 shows violin plots depicting the developers’ perception of LAs individ-
ually for each kind—having a median ‘Poor’ quality (1st quartile: ‘Poor’, median:
‘Poor’, 3rd quartile: ‘Neither good nor poor’). Mann-Whitney test indicates that
the median score provided for code without LAs is significantly higher than for code
with LAs (p− value <0.0001), with a large (d = 0.66) Cliff’s delta (d) effect size
[Grissom and Kim, 2005]. Overall, if we consider all LAs, 69% of the participants
perceive LAs as ‘Poor’ or ‘Very Poor’ practices. However, as Fig. 4 shows, the per-
ception distribution varies among different LAs. For instance, boxplots—i.e., the

Linguistic Antipatterns: What They Are and How Developers Perceive Them 19

Fig. 5 Percentage of participants perceiving LAs as ‘Poor’ or ‘Very Poor’.

inner lines of violin plots—for A.3 (“Set” method returns), B.1 (Not implemented
condition), B.3 (“Get” method does not return), B.4 (Not answered question), C.2
(Method signature and comment are opposite), and F.2 (Attribute signature and
comment are opposite) have lower quartile at ‘Very Poor’, median at ‘Poor’, and,
for all of them except B.1, higher quartile at ‘Poor’.

We also observe that the perceptions of B.6 (Expecting but not getting a collec-
tion), D.2 (Name suggests Boolean but type does not), E.1 (Says many but contains
one), and F.1 (Attribute name and type are opposite) have little variability and
are generally ‘Poor’.

On the contrary, the most controversial LAs are A.1 (“Get” - more than an
accessor) and A.2 (“Is” returns more than a Boolean), with lower and higher
quartiles being at ‘Poor’ and ‘Good’ respectively. Other controversial LAs are
A.4 (Expecting but not getting a single instance), B.2 (Validation method does not
confirm), B.5 (Transform method does not return), C.1 (Method name and return
type are opposite), and D.1 (Says one but contains many), with lower and higher
quartiles being at ‘Poor’ and ‘Neither poor nor good’ respectively.

In addition to violin plots, we show proportions of the LA perception by group-
ing, on the one hand, ‘Poor’ and ‘Very Poor’ judgements, and on the other hand,
‘Good’ and ‘Very Good’ ones. Results are reported in Fig. 5, where we sort LAs
based on the proportion of participants that perceive them as ‘Poor’ or ‘Very
Poor’. We observe that, for all but three LAs, majority of participants perceive
LAs as ‘Poor’ or ‘Very Poor’. The three exceptions are A.1 (“Get” - more than an
accessor), A.4 (Expecting but not getting a single instance), and D.1 (Says one but
contains many), for all of which the percentage of participants perceiving them as
‘Poor’ or ‘Very Poor’ is 36%, 37%, and 39%, respectively. These are the three LAs
having a median perception of ‘Neither poor nor good’ (see Fig. 4).

RQ2: Is the perception of LAs impacted by confounding factors?

We grouped the results of the participants according to their (i) main program-
ming language (Java/C# or C/C++), (ii) occupation (student vs. professional),

20 Venera Arnaoudova et al.

and (iii) years of programming experience (< 5 or ≥ 5 years). The grouping con-
cerning the main programming language is motivated by the different way the
languages handle Boolean expressions i.e., in C/C++ an expression returning a
non-null or non-zero value is evaluated as true, whereas Java and C# do not per-
form this cast directly. For this reason, our conjecture is that developers who are
used to C/C++ would consider acceptable that a method/attribute that should
return/contain a Boolean could instead return/contain an integer.

We performed a Mann-Whitney test to compare the median perception of par-
ticipants in each group. Results regarding the main programming language and
the experience of participants indicate no significant difference (p-value>0.05) with
a negligible Cliff’s delta effect size (d <0.147). We obtained consistent results—
i.e., no statistically significant differences when analyzing each LA separately—
thus, neither the main programming language nor the experience affect the way
participants perceive LAs. Only when considering LAs separately, the difference
between the rating given by professionals and students is statistically significant for
D.2—i.e., Name suggests Boolean but type does not, p-value=0.049, with a medium
effect size (d=0.40)—and a marginally significant for E.1—i.e., Says many but con-
tains one, p-value=0.053, with a medium effect size (d=-0.39). Thus, we conclude
that developers’ perceptions of LAs are not impacted by their main programming
language, occupation, or experience.

With the remaining three research questions we investigate the perception of
LAs of internal developers—i.e., we report the results of Study II.

RQ3: How do internal developers perceive LAs?

Regarding the general opinion of participants (i.e., answers of SII-q0), 51% of
the times participants perceived LAs as ‘Poor’ or ‘Very poor’. This percentage
is lower than the one obtained in Study I with external developers, i.e., 69%.
In our understanding—and also according to what we observed from developers’
comments (see Section 4.3)—such a decrease in the proportion may sometimes be
due to the context in which LAs occur where internal developers perceive LAs as
acceptable.

RQ4: What are the typical actions to resolve LAs?

Participants would undertake an action in 56% of the cases, and in 44% of the
cases they believe that the code should be left ‘as is’. We discuss the reasons
behind these two choices—as reported by the participants—and illustrate them
with examples in Section 4.322.

Overall, the kind of changes that participants are willing to undertake to reduce
the effect of LAs fall into one of the following (or a combination of those) categories:
renaming, change23 in comments, and change in implementation. In 42% of the
cases, the solution involved renaming, 14% involved a change of comments, and

22 We do not report project names with the examples to avoid disclosing the confidentiality
of the provided answers.
23 A change may be one or more of the following: modification, addition, or removal.

Linguistic Antipatterns: What They Are and How Developers Perceive Them 21

11% a change in the implementation. Resolving an LA may involve changes from
the different categories.

10% (5 out of 47) of the LAs shown to internal developers during the study
have been removed in the corresponding projects after we pointed them out. The
removed examples were instances of A.2 (“Is” returns more than a Boolean), A.3
(“Set” method returns), B.2 (Validation method does not confirm), and B.4 (Not
answered question). We report the examples in the corresponding LA tables when
discussing the perception of internal developers.

Clearly, one must consider that whether or not developers would actually un-
dertake an action depends on other factors such as the potential impact on other
projects, the risk of introducing a bug, and the high effort that is required [Ar-
naoudova et al., 2014]. Sometimes, developers are reluctant to rename program-
ming entities that belong to non-local context (e.g., public methods) or that are
bound at runtime (e.g., when classes are loaded by name or methods are bound by
name). We believe that some of those factors can be mitigated if LAs are pointed
out as developers write source code thus, for example, removing or limiting the
impact on other code entities.

RQ5: What causes LAs to occur?

Regarding the possible causes of LAs, we limit our analysis only to cases where
the participants wrote the code containing the LAs and cases where they were
knowledgeable of that code, e.g., because they were maintaining it. The reported
causes and the number of times they occur are as follows (ordered by decreasing
order of frequency):

1. Evolution (8): The code was initially consistent, but at some point an incon-
sistency was introduced, hence causing the LA.

2. Developers’ decision (7): It is a design choice or simply personal preference.
3. Not enough thought (5): Developers did not carefully choose the naming when

writing the code.
4. Reuse (2): Code was reused from elsewhere without properly adapting the

naming.

4.3 Qualitative analysis

For each type of LA, we first briefly summarize its definition and we provide the ra-
tionale behind it. Then, we illustrate it using the example we showed to external de-
velopers (i.e., in Study I)—examples coming from real software projects— followed
by possible consequences and solutions. Next, we highlight the perception of ex-
ternal and internal developers. Finally, we report the causes of LA introduction—
when reported by the internal developers.

22 Venera Arnaoudova et al.

A.1 - “Get” - more than an accessorA.1 - “Get” - more than an accessor

A getter that performs actions other than returning the corresponding at-
tribute without documenting it.
Rationale In Java, accessor methods, also called getters, provide a way

to access class attributes. As such, it is not common that get-
ters perform actions other than returning the corresponding
attribute. Any other action should be documented, possibly
naming the method differently than getSomething.

Example Method getImageData which, no matter the attribute value,
every time returns a new object (Fig. 1).

Consequences The usage of such getters would cause an unexpected alloca-
tion of new objects (which normally does not happen with
getters), or returning a null value when this should not be the
case, i.e., the attribute is not null.

Example solution When additional actions in accessor methods are necessary
they need to be documented except for common practices—
e.g., when implementing a lazy initialization [Gamma et al.,
1995]. A possible solution for the example shown in Fig. 1 is
to rename the method to createImageData and to comment the
unusual behavior: “A new ImageData object is created and
assigned to the attribute every time the method is called”.

Developers’ perception

External As shown in the stacked bar chart below, 36% (10 partici-
pants), perceived the practice as ‘Poor’ or ‘Very Poor’. 8 par-
ticipants, i.e., 29%, perceived the practice as ‘Neither poor
nor good’, while they suggested renaming and–or refactor-
ing actions. Finally, 10 participants, i.e., 36%, perceived this
practice as ‘Good’ or ‘Very good’ “because this is common
practice”, and, 3 of those commented that the documentation
should specify the additional functionality.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27

A.1
A.2
A.3
A.4
B.1
B.2
B.3
B.4
B.5
B.6
C.1
C.2
D.1
D.2
E.1
F.1
F.2

0% 25% 50% 75% 100%

7%
7%

4%

8%
3%

12%
11%

4%
7%

18%

4%
8%
7%

13%
14%

7%
14%

7%
15%

4%
11%

12%
11%

11%
20%

18%

4%
15%
17%

10%
39%

4%
14%

14%
19%

14%
7%

21%
8%

41%
11%

13%
29%

63%
54%

62%
57%

29%
41%

54%
66%

54%
48%

54%
54%

24%
30%

32%
47%

32%

30%
23%

14%
20%

11%
41%

14%
14%

4%
34%
36%

14%
44%

7%
43%

13%
4%

Very poor Poor Neither Good Very good

A.1

0% 25% 50% 75% 100%

18%18%29%32%4%

Very poor Poor Neither Good Very good

A.2

0% 25% 50% 75% 100%

7%20%13%47%13%

Very poor Poor Neither Good Very good

A.3

0% 25% 50% 75% 100%

4%11%11%32%43%

Very poor Poor Neither Good Very good

A.4

0% 25% 50% 75% 100%

11%11%41%30%7%

Very poor Poor Neither Good Very good

B.1

0% 25% 50% 75% 100%

12%12%8%24%44%

Very poor Poor Neither Good Very good

B.2

0% 25% 50% 75% 100%

11%21%54%14%

Very poor Poor Neither Good Very good

B.3

0% 25% 50% 75% 100%

4%7%54%36%

Very poor Poor Neither Good Very good

B.4

0% 25% 50% 75% 100%

3%14%48%34%

Very poor Poor Neither Good Very good

Very poor Poor Neither Good Very good

�1

Internal Developers decided not to refactor the examples of this type.
For instance, regarding method getPhases which retrieves a
result rather than being a simple accessor, one of the devel-
opers commented on the decision not to change it: “perhaps
the method could be renamed to findPhasesForLifecycle, but if
I remember correctly this class is meant as a data store and
then the getter is fine”.

Causes Developers’ decision.

Linguistic Antipatterns: What They Are and How Developers Perceive Them 23

A.2 - “Is” returns more than a BooleanA.2 - “Is” returns more than a Boolean

Method name is a predicate, whereas the return type is not Boolean but a
more complex type allowing a wider range of values.

Rationale When a method name starts with the term “is” one would
expect Boolean as return type, thus having two possible
values for the predicate, i.e., true and false. Thus, hav-
ing an “is” method that does not return Boolean, but
returns more information is counterintuitive. In such cases,
the method should be renamed or, at least, details about
the return values should be included in the method comments.

Example Method isValid with return type int (see Fig. 6).

Consequences Normally, problems related to such LA will be detected at
compile time (or even by the IDE), however the misleading
naming can still cause misunderstanding on the maintainers’
side.

Example solution When the return type cannot be changed to Boolean, we
recommend to document the return values. An example of
documentation for the method shown in Fig. 6, is “The
method returns −1 for ‘invalid’, 1 for ‘valid’, and 0 for ‘don’t
know’ ”.

Developers’ perception

External 18 participants (60%)—i.e., the majority—perceived this
practice as ‘Poor’ or ‘Very Poor’ and would have preferred
a Boolean return type. 4 participants (13%) perceived this
practice as ‘Neither poor nor good’. However, 8 participants
(27%) perceived this practice as ‘Good’ or ‘Very Good’.
Interestingly, 3 of them explicitly referred to the return
values being 0 or 1, and indicated that they are commonly
used instead of the Boolean values false and true. However,
the particular method returns −1 (which corresponds to
“invalid”), 1 (“valid”), or 0 (“don’t know”).

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27

A.1
A.2
A.3
A.4
B.1
B.2
B.3
B.4
B.5
B.6
C.1
C.2
D.1
D.2
E.1
F.1
F.2

0% 25% 50% 75% 100%

7%
7%

4%

8%
3%

12%
11%

4%
7%

18%

4%
8%
7%

13%
14%

7%
14%

7%
15%

4%
11%

12%
11%

11%
20%

18%

4%
15%
17%

10%
39%

4%
14%

14%
19%

14%
7%

21%
8%

41%
11%

13%
29%

63%
54%

62%
57%

29%
41%

54%
66%

54%
48%

54%
54%

24%
30%

32%
47%

32%

30%
23%

14%
20%

11%
41%

14%
14%

4%
34%
36%

14%
44%

7%
43%

13%
4%

Very poor Poor Neither Good Very good

A.1

0% 25% 50% 75% 100%

18%18%29%32%4%

Very poor Poor Neither Good Very good

A.2

0% 25% 50% 75% 100%

7%20%13%47%13%

Very poor Poor Neither Good Very good

A.3

0% 25% 50% 75% 100%

4%11%11%32%43%

Very poor Poor Neither Good Very good

A.4

0% 25% 50% 75% 100%

11%11%41%30%7%

Very poor Poor Neither Good Very good

B.1

0% 25% 50% 75% 100%

12%12%8%24%44%

Very poor Poor Neither Good Very good

B.2

0% 25% 50% 75% 100%

11%21%54%14%

Very poor Poor Neither Good Very good

B.3

0% 25% 50% 75% 100%

4%7%54%36%

Very poor Poor Neither Good Very good

B.4

0% 25% 50% 75% 100%

3%14%48%34%

Very poor Poor Neither Good Very good

Very poor Poor Neither Good Very good

�1

Internal Developers resolved the inconsistency of method isLeft re-
turning float, by removing the method (because the method
was replaced by a different one) after the forgotten call to
isLeft was replaced with the new method. The developer
explained that the method was reused from elsewhere and
the name was not adapted after the functionality changed.

Causes Evolution , reuse.

24 Venera Arnaoudova et al.

A.3 - “Set” method returnsA.3 - “Set” method returns

A set method having a return type different than void and not documenting the
return type/values with an appropriate comment.
Rationale Modifier methods, also called setters, are methods that allow as-

signing a value to a class attribute (the attribute being normally
protected or private, hence not directly accessible from outside).
By convention, setters do not return anything. More generally,
the same statement is valid for methods whose name starts with
“set”. Thus, a set method having a return type different than
void should document the return type/values to avoid any mis-
use. Valid exceptions of this practice are returning the modified
attribute after the modification, or returning the object in which
the method is defined to allow chaining method calls.

Example Method setBreadth in Fig. 7 shows one such case where the method
always creates a new object and returns it.

Consequences One could use the setter method without storing/checking its re-
turned value, hence useful information—e.g., related to erroneous
or unexpected behavior—is not captured.

Example solution The example shown in Fig. 7 can be improved by document-
ing that “The method creates a Dimension and set its breadth
to the value of source.” and by renaming the method to
createDimensionWithBreadth.

Developers’ perception

External The majority—21 participants (75%)—perceived this practice as
‘Poor’ or ‘Very Poor’ from which 12 participants (43%) perceived
this practice as ‘Very poor’. 3 participants (11%) perceived this
practice as ‘Neither poor nor good’ and 4 participants (14%) per-
ceived this practice as ‘Good’ or ‘Very Good’. A participant in-
dicated that in OO programming “majority of coders will agree
that the word ’set’ is usually used in opposition with ’get’ so that
many coders will suppose this method is setting a value to a mem-
ber/attribute. This is a very poor practice since this function is not
setting anything but instead creating an object”. The only partic-
ipant that perceived this practice as ‘Very good’ justified that
returning a value from a ‘set’ method can have a benefit as “in
most languages except Java it allows for chaining of method calls”.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27

A.1
A.2
A.3
A.4
B.1
B.2
B.3
B.4
B.5
B.6
C.1
C.2
D.1
D.2
E.1
F.1
F.2

0% 25% 50% 75% 100%

7%
7%

4%

8%
3%

12%
11%

4%
7%

18%

4%
8%
7%

13%
14%

7%
14%

7%
15%

4%
11%

12%
11%

11%
20%

18%

4%
15%
17%

10%
39%

4%
14%

14%
19%

14%
7%

21%
8%

41%
11%

13%
29%

63%
54%

62%
57%

29%
41%

54%
66%

54%
48%

54%
54%

24%
30%

32%
47%

32%

30%
23%

14%
20%

11%
41%

14%
14%

4%
34%
36%

14%
44%

7%
43%

13%
4%

Very poor Poor Neither Good Very good

A.1

0% 25% 50% 75% 100%

18%18%29%32%4%

Very poor Poor Neither Good Very good

A.2

0% 25% 50% 75% 100%

7%20%13%47%13%

Very poor Poor Neither Good Very good

A.3

0% 25% 50% 75% 100%

4%11%11%32%43%

Very poor Poor Neither Good Very good

A.4

0% 25% 50% 75% 100%

11%11%41%30%7%

Very poor Poor Neither Good Very good

B.1

0% 25% 50% 75% 100%

12%12%8%24%44%

Very poor Poor Neither Good Very good

B.2

0% 25% 50% 75% 100%

11%21%54%14%

Very poor Poor Neither Good Very good

B.3

0% 25% 50% 75% 100%

4%7%54%36%

Very poor Poor Neither Good Very good

B.4

0% 25% 50% 75% 100%

3%14%48%34%

Very poor Poor Neither Good Very good

Very poor Poor Neither Good Very good

�1

Internal A developer commented: “Sometimes it is convenient that a
’set’ method returns the old or the new value”. However, two
of the LA instances that internal developers resolved after we
pointed out the inconsistency were of type A.3. One occurred
in method setConnectionAsSharingClient returning Map; the LA
was resolved by improving the (Javadoc) documentation, ex-
plaining the return type and values. The other instance oc-
curred in method setAnimationView, returning AnimationView. The
changes applied to resolve it impacted 3 files (see Fig. 8). The
inconsistency was resolved by: i) improving the Javadoc ex-
plaining that the old value of the attribute is returned (class
NotificationManager) ii) renaming the local variable result to
oldView in the child class to reflect that the result contains
the old value (class NotificationManagerImpl), and iii) renaming
the attribute myAnimationView to myOriginalAnimationView in class
DialogIml which contains the result of setAnimationView, to reflect
that it contains the old value.

Causes Evolution.

Linguistic Antipatterns: What They Are and How Developers Perceive Them 25

A.4 - Expecting but not getting a single instanceA.4 - Expecting but not getting a single instance

Method name indicates that a single object is returned but the return type is
a collection.

Rationale When a method name indicates that a single object is re-
turned, one would expect that a single object is also returned.
If, instead, the return type is a collection, the method shall
be renamed or appropriate documentation is needed.

Example Method getExpansion returning List (see Fig. 9)—defined in
class DrillFrame—suggests that an object Expansion will be
returned whereas a collection is.

Consequences Although this would unlikely cause faults at run-time, it
might cause false expectancies to the developers. When
reading getExpansion, one would expect to handle a simple
object, whereas it is necessary to deal with multiple objects,
which requires different source code to analyze the result,
e.g., iterators.

Example solution A possible solution for the method shown in Fig. 9 would be
to rename it to getTreeNodes and rename the attribute accord-
ingly.

Developers’ perception

External 10 participants (37%) perceived this practice as ‘Poor’ or
‘Very Poor’. 11 participants (41%) perceived this LA as ‘Nei-
ther poor nor good’. 6 of them justified that in the particular
case, ‘expansion’ can be considered as ’list’, hence it does
not require plural. The other 5 would undertake a renaming.
6 participants (22%) considered this LA as ‘Good’ or ‘Very
good’, and also justified that ‘expansion’ suggests a collection,
or that they would understand the code by inferring the pres-
ence of a collection from the return type or from the comment.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27

A.1
A.2
A.3
A.4
B.1
B.2
B.3
B.4
B.5
B.6
C.1
C.2
D.1
D.2
E.1
F.1
F.2

0% 25% 50% 75% 100%

7%
7%

4%

8%
3%

12%
11%

4%
7%

18%

4%
8%
7%

13%
14%

7%
14%

7%
15%

4%
11%

12%
11%

11%
20%

18%

4%
15%
17%

10%
39%

4%
14%

14%
19%

14%
7%

21%
8%

41%
11%

13%
29%

63%
54%

62%
57%

29%
41%

54%
66%

54%
48%

54%
54%

24%
30%

32%
47%

32%

30%
23%

14%
20%

11%
41%

14%
14%

4%
34%
36%

14%
44%

7%
43%

13%
4%

Very poor Poor Neither Good Very good

A.1

0% 25% 50% 75% 100%

18%18%29%32%4%

Very poor Poor Neither Good Very good

A.2

0% 25% 50% 75% 100%

7%20%13%47%13%

Very poor Poor Neither Good Very good

A.3

0% 25% 50% 75% 100%

4%11%11%32%43%

Very poor Poor Neither Good Very good

A.4

0% 25% 50% 75% 100%

11%11%41%30%7%

Very poor Poor Neither Good Very good

B.1

0% 25% 50% 75% 100%

12%12%8%24%44%

Very poor Poor Neither Good Very good

B.2

0% 25% 50% 75% 100%

11%21%54%14%

Very poor Poor Neither Good Very good

B.3

0% 25% 50% 75% 100%

4%7%54%36%

Very poor Poor Neither Good Very good

B.4

0% 25% 50% 75% 100%

3%14%48%34%

Very poor Poor Neither Good Very good

Very poor Poor Neither Good Very good

�1

Internal Developers expressed the need to rename method
getMeetingMember returning List<MeetingMemberDTO> and
getAppointmentByRange returning List<Appointment>;
and to comment method getServersOption returning
ListOption<WebDavServerDescriptor>.

Causes Evolution.

26 Venera Arnaoudova et al.

DelayedValidity.java

2 * Licensed to the Apache Software Foundation (ASF) under one or more
17 package org.apache.cocoon.components.source.impl.validity;
18
19 /**
20 * Delays validity check for a specified interval.
21 *
22 * <p>
23 * This is wrapper validity which can be used to reduce count of filesystem (or
24 * network) accesses just to check the source validity.
25 *
26 * @since 2.1.8
27 * @version $Id: DelayedValidity.java 587750 2007-10-24 02:35:22Z vgritsenko $
28 */
29 public class DelayedValidity implements SourceValidity {
30
31 public int isValid() {
32 final long currentTime = System.currentTimeMillis();
33 if (currentTime <= this.expires) {
34 // The delay has not passed yet -
35 // assuming source is valid.
36 return SourceValidity.VALID;
37 }
38 // The delay has passed, prepare for the next interval.
39 this.expires = currentTime + this.delay;
40 return this.delegate.isValid();
41 }
42
43 private final long delay;
44 private long expires;
45
46 private final SourceValidity delegate;
47

Page 1

Fig. 6 “Is” returns more than a Boolean (A.2).

Orientation.java

203 public Dimension setLength(final Dimension target, final Dimension source) {
204 if (this.orientation == Orientation.VERTICAL) {
205 return new Dimension((int) target.getWidth(),
206 (int) source.getHeight());
207 } else {
208 return new Dimension((int) source.getWidth(),
209 (int) target.getHeight());
210 }
211 }
212
213 public Dimension setBreadth(final Dimension target, final int source) {
214 if (this.orientation == Orientation.VERTICAL) {
215 return new Dimension(source, (int) target.getHeight());
216 } else {
217 return new Dimension((int) target.getWidth(), source);
218 }
219 }
220
221 public Dimension setBreadth(final Dimension target, final Dimension source) {
222 if (this.orientation == Orientation.VERTICAL) {
223 return new Dimension((int) source.getWidth(),
224 (int) target.getHeight());
225 } else {
226 return new Dimension((int) target.getWidth(),
227 (int) source.getHeight());
228 }
229 }
230
231 public boolean isVertical() {
232 return this.orientation == Orientation.VERTICAL;
233 }
234

Page 7

Fig. 7 “Set” method returns (A.3).

Class NotificationManager Class NotificationManagerImpl

Class DialogImpl

Wednesday, 4 September, 13

Fig. 8 Changes applied to resolve an occurrence of A.3—setAnimationView.

toto.java

72
73 /**
74 * Returns the expansion state for a tree.
75 *
76 * @return the expansion state for a tree
77 */
78 public List getExpansion() {
79 return this.fExpansion;
80 }
81
83 * Returns the property name.
87 public Object getPropertyName() {
88 return this.fPropertyName;
89 }
90 }
91

Page 2

Fig. 9 Expecting but not getting a single instance (A.4).

Linguistic Antipatterns: What They Are and How Developers Perceive Them 27

B.1 - Not implemented conditionB.1 - Not implemented condition

The method’ comments suggest a conditional behavior that is not imple-
mented in the code. When the implementation is default this should be
documented.

Rationale A leading comment summarizes the behaviour of a method
at a higher level of abstraction. It allows developers to
grasp the intent of the method and the main lines of the
implementation without the need to go over all statements
in the method’s body. Thus, when a condition is expressed
in a method’s comment one assumes that the condition is
implemented.

Example Fig. 10 shows a method defined in class FileEditionEditorInput

that based on the comment “returns an empty array if this
object has no children” whereas the implementation always
returns the same value.

Consequences This LA can have two main consequences. First, clients of
the corresponding methods assume the documented behavior
resulting in wrong system behavior. Second, during testing—
especially black box testing—the tester would invest time
and effort to generate test cases for the different conditions,
while one test case will cover all method statements (or, in
general, less test cases are needed).

Example solution The method shown in Fig. 10 could document the default
behavior if it is intentional: “This method provides a default
behavior by always returning an empty array.”

Developers’ perception

External 17 participants (68%) perceived this practice as ‘Poor’ or
‘Very Poor’—11 of which (44%) perceived this practice as
‘Very poor’. Some of them assumed that the implementation
is a placeholder for future code and explained “...that’s really
dangerous! Such code builds perfectly and sooner or later will
be used by someone who will have a very bad surprise about
the results”. 2 participants (8%) perceived this practice as
‘Neither poor nor good’ and 6 participants (24%) perceived
this practice as ‘Good’ or ‘Very Good’.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27

A.1
A.2
A.3
A.4
B.1
B.2
B.3
B.4
B.5
B.6
C.1
C.2
D.1
D.2
E.1
F.1
F.2

0% 25% 50% 75% 100%

7%
7%

4%

8%
3%

12%
11%

4%
7%

18%

4%
8%
7%

13%
14%

7%
14%

7%
15%

4%
11%

12%
11%

11%
20%

18%

4%
15%
17%

10%
39%

4%
14%

14%
19%

14%
7%

21%
8%

41%
11%

13%
29%

63%
54%

62%
57%

29%
41%

54%
66%

54%
48%

54%
54%

24%
30%

32%
47%

32%

30%
23%

14%
20%

11%
41%

14%
14%

4%
34%
36%

14%
44%

7%
43%

13%
4%

Very poor Poor Neither Good Very good

A.1

0% 25% 50% 75% 100%

18%18%29%32%4%

Very poor Poor Neither Good Very good

A.2

0% 25% 50% 75% 100%

7%20%13%47%13%

Very poor Poor Neither Good Very good

A.3

0% 25% 50% 75% 100%

4%11%11%32%43%

Very poor Poor Neither Good Very good

A.4

0% 25% 50% 75% 100%

11%11%41%30%7%

Very poor Poor Neither Good Very good

B.1

0% 25% 50% 75% 100%

12%12%8%24%44%

Very poor Poor Neither Good Very good

B.2

0% 25% 50% 75% 100%

11%21%54%14%

Very poor Poor Neither Good Very good

B.3

0% 25% 50% 75% 100%

4%7%54%36%

Very poor Poor Neither Good Very good

B.4

0% 25% 50% 75% 100%

3%14%48%34%

Very poor Poor Neither Good Very good

Very poor Poor Neither Good Very good

�1

Internal The example we pointed out is documented as: “Release
the current detector and load new detector from file (if
detector file name is not 0). Return true on success.”,
whereas its implementation always returns false. The
developer shared that “the code is part of a legacy mod-
ule and it will be removed with the next major library update”.

28 Venera Arnaoudova et al.

B.2 - Validation method does not confirmB.2 - Validation method does not confirm

A validation method that neither provides a return value informing whether
the validation was successful, nor it documents how to proceed to understand.

Rationale A validation method—i.e., a method whose name starts with,
for example, “validate”, “check”, or “ensure”—is a method
performing a check for validity that is usually required as
a precondition for other operations. As such, validation
methods are expected to inform the user whether the check is
successful or not either by returning true/false or by throwing
an exception is case the validation fails.

Example Fig. 11 shows method checkCollision defined in class
UMLComboBoxEntry that neither returns Boolean nor throws an
exception.

Consequences One may not know how to handle the outcome of the vali-
dation. Very likely, such an outcome is stored somewhere—
e.g., an instance variable—however this is not clear from the
method specification/documentation.

Example solution Validation methods must inform the user of the result of the
validation by means of return value, exceptions, warnings,
or errors. A solution for the example in Fig. 11 would be to
return the variable collision. In addition, the actions in case
of collision could be extracted in a separate method named
resolveCollision.

Developers’ perception

External The majority of the participants, i.e., 19 participants (68%),
agreed that this is a poor/very poor practice. The remaining
9 participants were more lenient—3 participants (11%) per-
ceived it as ‘Good’ and 6 participants (21%) as ‘Neither poor
nor good’. This is mainly because they trust the validation
performed by the method, and do not expect a return value.
Indeed, one of them explained that “Would be better to have
a value that would certify the results but not necessary”.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27

A.1
A.2
A.3
A.4
B.1
B.2
B.3
B.4
B.5
B.6
C.1
C.2
D.1
D.2
E.1
F.1
F.2

0% 25% 50% 75% 100%

7%
7%

4%

8%
3%

12%
11%

4%
7%

18%

4%
8%
7%

13%
14%

7%
14%

7%
15%

4%
11%

12%
11%

11%
20%

18%

4%
15%
17%

10%
39%

4%
14%

14%
19%

14%
7%

21%
8%

41%
11%

13%
29%

63%
54%

62%
57%

29%
41%

54%
66%

54%
48%

54%
54%

24%
30%

32%
47%

32%

30%
23%

14%
20%

11%
41%

14%
14%

4%
34%
36%

14%
44%

7%
43%

13%
4%

Very poor Poor Neither Good Very good

A.1

0% 25% 50% 75% 100%

18%18%29%32%4%

Very poor Poor Neither Good Very good

A.2

0% 25% 50% 75% 100%

7%20%13%47%13%

Very poor Poor Neither Good Very good

A.3

0% 25% 50% 75% 100%

4%11%11%32%43%

Very poor Poor Neither Good Very good

A.4

0% 25% 50% 75% 100%

11%11%41%30%7%

Very poor Poor Neither Good Very good

B.1

0% 25% 50% 75% 100%

12%12%8%24%44%

Very poor Poor Neither Good Very good

B.2

0% 25% 50% 75% 100%

11%21%54%14%

Very poor Poor Neither Good Very good

B.3

0% 25% 50% 75% 100%

4%7%54%36%

Very poor Poor Neither Good Very good

B.4

0% 25% 50% 75% 100%

3%14%48%34%

Very poor Poor Neither Good Very good

Very poor Poor Neither Good Very good

�1

Internal Method validateSnaps with return type void, is an example
of B.2, that was renamed to processSnaps after we pointed
out the inconsistency. Other examples of this LAs where
developers expressed a need for renaming are methods
checkVertices and checkCurrentState. The 2 examples where
developers decided not to take an action are method
validateActivatedProfiles which in case of invalid profile noti-
fies the user with a warning; method checkRecordingFile where
the developer commented “a method that starts with the
name ”check” has a special validation meaning is new to me.”

Causes Evolution, not enough thought.

Linguistic Antipatterns: What They Are and How Developers Perceive Them 29

B.3 - “Get” method does not returnB.3 - “Get” method does not return

The name suggests that the method returns something (e.g., name starts with
“get” or “return”) but the return type is void. The documentation should
explain where the resulting data is stored and how to obtain it.

Rationale A method whose name starts with “get” or “return” suggests
that an object will be returned as a result of the method
execution. Thus, having such methods returning void with-
out documenting where the result is stored is counterintuitive.

Example The example in Fig. 12 shows the source code of a method
named getMethodBodies, defined in class Compiler, which sug-
gests method bodies as result, however nothing is returned.

Consequences One would expect to be able to assign the method return
value to a variable. However, since this is not possible, one
has to further understand the code to determine where the
retrieved data is stored and how to obtain it.

Example solution The example shown in Fig. 12 could be resolved by renaming
the method to fillMethodBodies or by adding a documenta-
tion: “The method parses the method bodies and stores the
result in the parameter unit”.

Developers’ perception

External 25 participants (89%) perceived this practice as ‘Poor’
or ‘Very Poor’: all agreed that there should be either a
renaming (e.g., ‘fill’, ‘parse’, or ‘set’ instead of ‘get’) or code
modification (e.g., refactoring or changing the return type). 2
participants (7%) perceived this practice as ‘Neither poor nor
good’; 1 participant (4%) perceived this practice as ‘Good’.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27

A.1
A.2
A.3
A.4
B.1
B.2
B.3
B.4
B.5
B.6
C.1
C.2
D.1
D.2
E.1
F.1
F.2

0% 25% 50% 75% 100%

7%
7%

4%

8%
3%

12%
11%

4%
7%

18%

4%
8%
7%

13%
14%

7%
14%

7%
15%

4%
11%

12%
11%

11%
20%

18%

4%
15%
17%

10%
39%

4%
14%

14%
19%

14%
7%

21%
8%

41%
11%

13%
29%

63%
54%

62%
57%

29%
41%

54%
66%

54%
48%

54%
54%

24%
30%

32%
47%

32%

30%
23%

14%
20%

11%
41%

14%
14%

4%
34%
36%

14%
44%

7%
43%

13%
4%

Very poor Poor Neither Good Very good

A.1

0% 25% 50% 75% 100%

18%18%29%32%4%

Very poor Poor Neither Good Very good

A.2

0% 25% 50% 75% 100%

7%20%13%47%13%

Very poor Poor Neither Good Very good

A.3

0% 25% 50% 75% 100%

4%11%11%32%43%

Very poor Poor Neither Good Very good

A.4

0% 25% 50% 75% 100%

11%11%41%30%7%

Very poor Poor Neither Good Very good

B.1

0% 25% 50% 75% 100%

12%12%8%24%44%

Very poor Poor Neither Good Very good

B.2

0% 25% 50% 75% 100%

11%21%54%14%

Very poor Poor Neither Good Very good

B.3

0% 25% 50% 75% 100%

4%7%54%36%

Very poor Poor Neither Good Very good

B.4

0% 25% 50% 75% 100%

3%14%48%34%

Very poor Poor Neither Good Very good

Very poor Poor Neither Good Very good

�1

Internal For the two examples of this LA that we showed to the
internal developers, they would undertake a renaming.
For method getTaskAttributes the developer suggested to
rename the parameter id2value making it clear that it will
hold the result. For method getUpstramProjects a developer
commented: “Some might say that this is OK as it’s a helper
method for recursion when building the tree. I wouldn’t”.

30 Venera Arnaoudova et al.FileEditionEditorInput.java

58
59
60 /**
61 * Returns the children of this object. When this object is
62 * displayed in a tree, the returned objects will be this
63 * element's children. Returns an empty array if this object
64 * has no children.
65 *
66 * @param object The object to get the children for.
67 */
68 public Object[] getChildren(final Object o) {
69 return new Object[0];
70 }
71
73 * Returns an open input stream on the contents of this file.

The client is
80 public InputStream getContents() throws CoreException {
81 return this.file.fetchContent(null);
82 }
83
85 * Returns the content type of the input. For instance, if the

input wraps
90 public String getContentType() {
91 final String name = this.file.getName();
92 return name.substring(name.lastIndexOf('.') + 1);
93 }
94
96 * Returns the fully qualified path name of the input.
98 public String getFullPath() {
99 // use path to make sure slashes are correct
100 return new Path(this.file.getProjectName()).append(
101 this.file.getProjectRelativePath()).toString();
102 }
103
105 * Returns the image descriptor for this input.
109 public ImageDescriptor getImageDescriptor() {
110 final IWorkbenchAdapter fileAdapter = (IWorkbenchAdapter)

this.file
111 .getAdapter(IWorkbenchAdapter.class);
112 return fileAdapter == null ? null : fileAdapter
113 .getImageDescriptor(this.file);
114 }
115
117 * @see IWorkbenchAdapter#getImageDescriptor

Page 2

Fig. 10 Not implemented condition (B.1).

B2.java

71
72 public void updateName() {
73 if (this._element != null) {
74 final MNamespace ns = this._element.getNamespace();
75 this._shortName =

this._profile.formatElement(this._element, ns);
76 }
77 }
78
79 public void checkCollision(final String before,
80 final String after) {
81 final boolean collision = before != null
82 && before.equals(this._shortName) || after != null
83 && after.equals(this._shortName);
84 if (collision) {
85 if (this._longName == null) {
86 this._longName = this.getLongName();
87 }
88 this._displayName = this._longName;
89 }
90 }
91
92 public String getShortName() {
93 return this._shortName;
94 }
95
96 public String getLongName() {
97 if (this._longName == null) {
98 if (this._element != null) {
99 this._longName =

this._profile.formatElement(this._element,
100 null);
101 } else {
102 this._longName = "void";
103 }
104 }
105 return this._longName;
106 }
107
108 // Refactoring: static to denote that it doesn't use any class

members.
109 // Needs-more-work:
110 // Idea to move this to MMUtil together with the same function

from

Page 3

Fig. 11 Validation method does not confirm (B.2).

B3.java

284
285 /**
286 * Answer an array of descriptions for the configurable options.

The
287 * descriptions may be changed and passed back to a different

compiler.
288 *
289 * @return ConfigurableOption[] - array of configurable options
290 */
291 public static ConfigurableOption[] getDefaultOptions(final

Locale locale) {
292 return new CompilerOptions().getConfigurableOptions(locale);
293 }
294
295 protected void getMethodBodies(
296 final CompilationUnitDeclaration unit,
297 final int place) {
298 // fill the methods bodies in order for the code
299 // to be generated
300 if (unit.ignoreMethodBodies) {
301 unit.ignoreFurtherInvestigation = true;
302 return; // if initial diet parse did not work,
303 // no need to dig into method bodies.
304 }
305 if (place < this.parseThreshold) {
306 return; // work already done ...
307 }
308 // real parse of the method....
309 this.parser.scanner
310 .setSourceBuffer(
311 unit.compilationResult.compilationUnit
312 .getContents());
313 if (unit.types != null) {
314 for (int i = unit.types.length; --i >= 0;) {
315 unit.types[i].parseMethod(this.parser, unit);
316 }
317 }
318 }
319
320 /*
321 * Compiler crash recovery in case of unexpected runtime

exceptions
322 */
323 protected void handleInternalException(final Throwable

internalException,

Page 9

Fig. 12 “Get” method does not return (B.3).

Linguistic Antipatterns: What They Are and How Developers Perceive Them 31

B.4 - Not answered questionB.4 - Not answered question

The method name is in the form of predicate, whereas nothing is returned.

Rationale A method whose name is a predicate (e.g., starts with “is”,
“has”) is expected to have Boolean as return type where the
returned value indicates an assertion or a denial.

Example Fig. 13 shows an example of method isValid, declared in
class ISelectionValidator, where the name suggests a Boolean
value as result but nothing is returned.

Consequences Consequences are similar to those of “Get” method does not
return. In this case, the developer would even expect to use
the method within a conditional control structure, which is
however not possible.

Example solution The example shown in Figure 13 can be resolved by docu-
menting that “the result of the validation and the validation
message are stored in res”, by changing the return type to
Boolean, and by returning true when the selection is valid
and false otherwise.

Developers’ perception

External 24 participants (83%) perceived the practice as ‘Poor’
or ‘Very poor’. Only 4 participants (14%) perceived this
practice as ’Neither poor nor good’ and 3 of them would
undertake an action (renaming or code modification). Only
1 participant (3%) perceived it as ‘Very good’ because “it is
understandable”. This participant indicated C as her main
programming languages, while being not expert of Java.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27

A.1
A.2
A.3
A.4
B.1
B.2
B.3
B.4
B.5
B.6
C.1
C.2
D.1
D.2
E.1
F.1
F.2

0% 25% 50% 75% 100%

7%
7%

4%

8%
3%

12%
11%

4%
7%

18%

4%
8%
7%

13%
14%

7%
14%

7%
15%

4%
11%

12%
11%

11%
20%

18%

4%
15%
17%

10%
39%

4%
14%

14%
19%

14%
7%

21%
8%

41%
11%

13%
29%

63%
54%

62%
57%

29%
41%

54%
66%

54%
48%

54%
54%

24%
30%

32%
47%

32%

30%
23%

14%
20%

11%
41%

14%
14%

4%
34%
36%

14%
44%

7%
43%

13%
4%

Very poor Poor Neither Good Very good

A.1

0% 25% 50% 75% 100%

18%18%29%32%4%

Very poor Poor Neither Good Very good

A.2

0% 25% 50% 75% 100%

7%20%13%47%13%

Very poor Poor Neither Good Very good

A.3

0% 25% 50% 75% 100%

4%11%11%32%43%

Very poor Poor Neither Good Very good

A.4

0% 25% 50% 75% 100%

11%11%41%30%7%

Very poor Poor Neither Good Very good

B.1

0% 25% 50% 75% 100%

12%12%8%24%44%

Very poor Poor Neither Good Very good

B.2

0% 25% 50% 75% 100%

11%21%54%14%

Very poor Poor Neither Good Very good

B.3

0% 25% 50% 75% 100%

4%7%54%36%

Very poor Poor Neither Good Very good

B.4

0% 25% 50% 75% 100%

3%14%48%34%

Very poor Poor Neither Good Very good

Very poor Poor Neither Good Very good

�1

Internal All internal developers perceived this practice as ‘Poor’ or
‘Very poor’. After we pointed out method isSnapped, the code
was removed as it was not used anymore. Another developer
suggested to rename method isLastWindow.

Causes Not enough thought.

32 Venera Arnaoudova et al.

B.5 - Transform method does not returnB.5 - Transform method does not return

The method name suggests the transformation of an object, however there is
no return value and it is not clear from the documentation where the result
is stored.

Rationale A method whose name suggests the transformation of an
object is expected to return the result or, if this is not the
case, document where the results is stored—e.g., if one of the
parameter stores the result then this must be clear from its
name/documentation.

Example An example of this LA is shown in Fig. 14—method
javaToNative defined in class LocalSelectionTransfer—where
the name suggests a transformation of an object but it is
unclear where the result is stored and how to retrieve it.

Consequences Similar to “Get” method does not return. Specifically, here
one would expect to be able to assign the result of the
method to a variable suggested by the method name (Native
in our example, i.e., a platform-specific representation).

Example solution The example shown in Fig. 14 could document that “The
result of the conversion is stored in transferData” or simply
inherit the documentation of the overridden method—as in
this case it exists.

Developers’ perception

External 15 participants (58%) perceived this practice as ‘Poor’ or
‘Very poor’. 2 participants justified the expected return type
by providing as example the toString method. From the
other 11 participants—5 participants (19%) perceived this
practice as ‘Neither poor nor good’ and 6 participants (23%)
perceived this practice as ‘Good’ or ‘Very Good’—2 would
prefer to have a (non void) return type, although perceiving
the practice as ‘Neither poor nor good’; and 1 perceived
the practice as ‘Very good’ but justified: “I would blame for
anything the superclass as this is a polymorphic method”. On
the contrary, 3 of the participants explicitly stated that no
return type should be expected from a transform method.

B.5

0% 25% 50% 75% 100%

8%15%19%54%4%

Very poor Poor Neither Good Very good

B.6

0% 25% 50% 75% 100%

7%14%66%14%

Very poor Poor Neither Good Very good

C.1

0% 25% 50% 75% 100%

4%14%14%54%14%

Very poor Poor Neither Good Very good

C.2

0% 25% 50% 75% 100%

7%7%4%41%41%

Very poor Poor Neither Good Very good

D.1

0% 25% 50% 75% 100%

7%14%39%29%11%

Very poor Poor Neither Good Very good

D.2

0% 25% 50% 75% 100%

13%10%57%20%

Very poor Poor Neither Good Very good

E.1

0% 25% 50% 75% 100%

7%17%62%14%

Very poor Poor Neither Good Very good

F.1

0% 25% 50% 75% 100%

8%15%54%23%

Very poor Poor Neither Good Very good

F.2

0% 25% 50% 75% 100%

4%4%63%30%

Very poor Poor Neither Good Very good

�2

Internal The example we showed to a developer is method
PMCamera Global3dToLocal3d with void return type. The
developer decided not to undertake an action “to save
resources—instead of creating a new object and return it, it
is convenient to store the result in a parameter.”

Causes Developers’ decision.

Linguistic Antipatterns: What They Are and How Developers Perceive Them 33

B.6 - Expecting but not getting a collectionB.6 - Expecting but not getting a collection

The method name suggests that a collection should be returned, but a single
object or nothing is returned.

Rationale A method whose name suggests that a collection is returned
is expected to also have a collection as return type. If the
method returns a single object then it must be clear form the
documentation what is the implicit aggregation function and
the method must be considered for renaming.

Example In the example shown in Fig. 15, the name of the method,
defined in class SAXParserBase, suggests that some statistics
will be returned, while the method only returns a Boolean
value.

Consequences A developer would likely expect that the method will return
a set of values (e.g., a time series of temperature, or an array
of monitoring data), suggesting that appropriate patterns,
such as iterators, are needed to navigate the data structure.
Instead, in some cases, the method may return only one of
these values, or, in other cases, like the one in Fig. 15, the
returned value is completely inconsistent with the method
name.

Example solution A solution for the example shown in Fig. 15 would be to
rename the method to isStatisticsEnabled as well as the
corresponding attribute.

Developers’ perception

External 23 participants (79%) perceived the practice as ‘Poor’ or
‘Very poor’. To reflect the return type, participants suggested
a renaming, e.g., haveStats, statsEnabled, or statsShown. From
the other 6 participants, 2 (7%) perceived the practice as
‘Good’, while 4 (14%) as ‘Neither good nor poor’. One
of these 4 participants justified the choice after wrongly
inferring that stats stands for ‘status’, whereas another
participant was confused by the Boolean return type.

B.5

0% 25% 50% 75% 100%

8%15%19%54%4%

Very poor Poor Neither Good Very good

B.6

0% 25% 50% 75% 100%

7%14%66%14%

Very poor Poor Neither Good Very good

C.1

0% 25% 50% 75% 100%

4%14%14%54%14%

Very poor Poor Neither Good Very good

C.2

0% 25% 50% 75% 100%

7%7%4%41%41%

Very poor Poor Neither Good Very good

D.1

0% 25% 50% 75% 100%

7%14%39%29%11%

Very poor Poor Neither Good Very good

D.2

0% 25% 50% 75% 100%

13%10%57%20%

Very poor Poor Neither Good Very good

E.1

0% 25% 50% 75% 100%

7%17%62%14%

Very poor Poor Neither Good Very good

F.1

0% 25% 50% 75% 100%

8%15%54%23%

Very poor Poor Neither Good Very good

F.2

0% 25% 50% 75% 100%

4%4%63%30%

Very poor Poor Neither Good Very good

�2

Internal Examples of this LA where developers would undertake a
renaming are method getRows returning int where developer
suggested getHeight as more appropriate name; method
getStates returning State. Examples where developers con-
sider the practice acceptable are method getBounds returning
Dimension; method getValues returning bool where the result is
stored in parameter values and the returned value “indicates
success or failure”.

Causes Evolution, Not enough thought.

34 Venera Arnaoudova et al.

C.1 - Method name and return type are oppositeC.1 - Method name and return type are opposite

The intent of the method suggested by its name is in contradiction with what
it returns.

Rationale The name of a method indicates the action that will be
performed while its return type specifies the type of the
result from this action. As such, the return type mush be
consistent, i.e., not in contradiction, with the method’s name.

Example The method shown in Fig. 16, defined in class
ControlEnableState, is an example of this LA, where the
name and return type are inconsistent because the method
disable returns an “enable” state. With the available doc-
umentation, the reader will infer that the return type is a
control state that can be enabled or disabled.

Consequences The developers can make wrong assumptions on the returned
value and this might not be discovered at compile time. In
some cases—e.g., when the method returns a Boolean—the
developer could negate (or not) the value where it should not
be negated (or it should be).

Example solution To resolve the example shown in Fig. 16, the class
ControlEnableState could be renamed to ControlState to
handle the case where the state is enabled but also where
the state is disabled. Thus, the inconsistency with method
disable is resolved as it will be returning a ControlState.

Developers’ perception

External 19 participants (68%) perceived it as ‘Poor’ or ‘Very poor’.
From the other 9—4 participants (14%) perceived this
practice as ‘Neither poor nor good’ and 5 participants
(18%) perceived this practice as ‘Good’ or ‘Very Good’—a
participant suggested to rename the return type, to avoid the
use of antonyms; another admitted that “Even if the wording
is not totally clear we get that it returns the state”. The
remaining 7 participants had no issue with this practice, and
highlighted that the existing comment “Saves the current
enable/disable state ...” is complementary and clarifies the
purpose of the method.

B.5

0% 25% 50% 75% 100%

8%15%19%54%4%

Very poor Poor Neither Good Very good

B.6

0% 25% 50% 75% 100%

7%14%66%14%

Very poor Poor Neither Good Very good

C.1

0% 25% 50% 75% 100%

4%14%14%54%14%

Very poor Poor Neither Good Very good

C.2

0% 25% 50% 75% 100%

7%7%4%41%41%

Very poor Poor Neither Good Very good

D.1

0% 25% 50% 75% 100%

7%14%39%29%11%

Very poor Poor Neither Good Very good

D.2

0% 25% 50% 75% 100%

13%10%57%20%

Very poor Poor Neither Good Very good

E.1

0% 25% 50% 75% 100%

7%17%62%14%

Very poor Poor Neither Good Very good

F.1

0% 25% 50% 75% 100%

8%15%54%23%

Very poor Poor Neither Good Very good

F.2

0% 25% 50% 75% 100%

4%4%63%30%

Very poor Poor Neither Good Very good

�2

Internal Regarding method exit transport impl returning
Enter Transport, internal developers would rename it,
however, they were not certain about the new name “in
English there isn’t a word (that I know of) which bundles
together ’enter’ and ’exit”’. Another example of this LA is
method player enemy impl returning a Player Ally, where one
of the developers justified the decision as part of the design.
However, other developers of the system would rename the
return type to reflect both states.

Causes Developers’ decision.

Linguistic Antipatterns: What They Are and How Developers Perceive Them 35

B4.java

576 /**
577 * Creates and returns a dialog to choose an existing workspace

file.
578 */
579 protected ElementTreeSelectionDialog

createWorkspaceFileSelectionDialog(
580 final String title, final String message) {
581 final int labelFlags = JavaElementLabelProvider.SHOW_BASICS
582 | JavaElementLabelProvider.SHOW_OVERLAY_ICONS
583 | JavaElementLabelProvider.SHOW_SMALL_ICONS;
584 final ITreeContentProvider contentProvider = new

JavaElementContentProvider(
585 true, false, false);
586 final ILabelProvider labelProvider = new

JavaElementLabelProvider(
587 labelFlags);
588 final ElementTreeSelectionDialog dialog = new

ElementTreeSelectionDialog(
589 getShell(), labelProvider, contentProvider, false,

true);
590 dialog.setValidator(new ISelectionValidator() {
591
592 public void isValid(final Object[] selection,
593 final StatusInfo res) {
594 // only single selection
595 if (selection.length == 1
596 && selection[0] instanceof IFile) {
597 res.setOK();
598 } else {
599 res.setError(""); //$NON-NLS-1$
600 }
601 }
602
603 });
604 dialog.addFilter(new EmptyInnerPackageFilter());
605 dialog.setTitle(title);
606 dialog.setMessage(message);
607 dialog.setStatusLineAboveButtons(true);
608

dialog.setInput(JavaCore.create(JavaPlugin.getDefault().getWorkspac
e()

609 .getRoot()));
610 return dialog;
611 }

Page 17

Fig. 13 Not answered question (B.4).

LocalSelectionTransfer.java

40 }
41
42 /**
43 * The used type id to identify this transfer.
44 */
45 protected int[] getTypeIds() {
46 return new int[] { LocalSelectionTransfer.TYPEID };
47 }
48
49 protected String[] getTypeNames() {
50 return new String[] { LocalSelectionTransfer.TYPE_NAME };
51 }
52
53 public void javaToNative(final Object object,
54 final TransferData transferData) {
55 final byte[] check =
56 LocalSelectionTransfer.TYPE_NAME.getBytes();
57 super.javaToNative(check, transferData);
58 }
59
60 public Object nativeToJava(final TransferData transferData) {
61 final Object result = super.nativeToJava(transferData);
62 if (!(result instanceof byte[])
63 || !LocalSelectionTransfer.TYPE_NAME.equals(new

String(
64 (byte[]) result))) {
65 JavaPlugin.logErrorMessage(JavaUIMessages
66 .getString("LocalSelectionTransfer.errorMessage")

); //$NON-NLS-1$
67 }
68 return this.fSelection;
69 }
70
71 /**
72 * Sets the transfer data for local use.
73 */
74 public void setSelection(final ISelection s) {
75 this.fSelection = s;
76 }
77 }
78

Page 2

Fig. 14 Transform method does not return (B.5).

B6.java

70
71 protected boolean _startElement = false;
72
73 // ///

/
74 // accessors
75
76 public void setDebug(final boolean debug) {
77 SAXParserBase._dbg = debug;
78 }
79
80 public void setStats(final boolean stats) {
81 SAXParserBase._stats = stats;
82 }
83
84 public boolean getStats() {
85 return SAXParserBase._stats;
86 }
87
88 public long getParseTime() {
89 return SAXParserBase._parseTime;
90 }
91
92 // ///

/
93 // main parsing method
94
95 public void parse(final URL url) throws Exception {
96 this.parse(url.openStream());
97 }
98
99 public void parse(final InputStream is) throws Exception {
100
101 long start, end;
102
103 final SAXParserFactory factory =

SAXParserFactory.newInstance();
104 factory.setNamespaceAware(false);
105 factory.setValidating(false);
106 try {
107 final SAXParser parser = factory.newSAXParser();
108 final InputSource input = new InputSource(is);
109

input.setSystemId(this.getJarResource("org.argouml.kernel.Project"))
;

Page 3

Fig. 15 Expecting but not getting a collection (B.6).

C1.java

44 }
45 /**
46 * Creates a new object and saves in it the current enable/

disable
47 * state of the given control and its descendents; the controls
48 * that are saved are also disabled.
49 *
50 * @param w the control
51 */
52 protected ControlEnableState(Control w) {
53 this(w, null);
54 }
55 /**
56 * Creates a new object and saves in it the current enable/

disable
57 * state of the given control and its descendents except for the
58 * given list of exception cases; the controls that are saved
59 * are also disabled.
60 *
61 * @param w the control
62 * @param exceptions the list of controls to not disable
63 * (element type: <code>Control</code>), or <code>null</code>

if none
64 */
65 protected ControlEnableState(Control w, List exceptions) {
66 super();
67 states = new ArrayList();
68 this.exceptions = exceptions;
69 readStateForAndDisable(w);
70
71 }
72
73 /**
74 * Saves the current enable/disable state of the given control
75 * and its descendents in the returned object; the controls
76 * are all disabled.
77 *
78 * @param w the control
79 * @return an object capturing the enable/disable state
80 */
81 public static ControlEnableState disable(Control w) {
82 return new ControlEnableState(w);
83 }
84

Page 2

Fig. 16 Method name and return type are opposite (C.1).

36 Venera Arnaoudova et al.

C.2 - Method signature and comment are oppositeC.2 - Method signature and comment are opposite

The documentation of a method is in contradiction with its declaration.

Rationale The leading comment of a method specifies the method’s
intent at a higher level of abstraction and as such it must be
consistent with, i.e., not contradicts, its actual implementa-
tion.

Example Fig. 17 shows method isNavigateForwardEnabled where the
name of the method is in contradiction with its comment
documenting “a back navigation”, as “forward” and “back”
are antonyms.

Consequences Consequences are similar to those of the Method name and
return type are opposite, and can be even more misleading
because the developer is unsure whether to trust the comment
or the method’s signature. Either the one or the other is
outdated or inconsistent, and has to be updated.

Example solution The inconsistency in the example shown in Fig. 17 would be
resolved by correcting the comment to document “a forward
navigation” thus being consistent with the implementation.

Developers’ perception

External 22 participants (81%) condemned this practice, with 11
(41%) perceived it as ‘Very poor’. One participant explicitly
justified that she would trust the naming rather than the
comment. This is also reflected by the high percentage (74%)
of participants who perceived that the action to be under-
taken would be to change the comment. 1 participants (4%)
perceived this practice as ‘Neither poor nor good’; 4 partic-
ipants (15%) perceived this practice as ‘Good’ or ‘Very Good’.

B.5

0% 25% 50% 75% 100%

8%15%19%54%4%

Very poor Poor Neither Good Very good

B.6

0% 25% 50% 75% 100%

7%14%66%14%

Very poor Poor Neither Good Very good

C.1

0% 25% 50% 75% 100%

4%14%14%54%14%

Very poor Poor Neither Good Very good

C.2

0% 25% 50% 75% 100%

7%7%4%41%41%

Very poor Poor Neither Good Very good

D.1

0% 25% 50% 75% 100%

7%14%39%29%11%

Very poor Poor Neither Good Very good

D.2

0% 25% 50% 75% 100%

13%10%57%20%

Very poor Poor Neither Good Very good

E.1

0% 25% 50% 75% 100%

7%17%62%14%

Very poor Poor Neither Good Very good

F.1

0% 25% 50% 75% 100%

8%15%54%23%

Very poor Poor Neither Good Very good

F.2

0% 25% 50% 75% 100%

4%4%63%30%

Very poor Poor Neither Good Very good

�2

Linguistic Antipatterns: What They Are and How Developers Perceive Them 37

D.1 - Says one but contains manyD.1 - Says one but contains many

An attribute name suggests a single instance, while its type suggests that the
attribute stores a collection of objects.

Rationale The name of an attribute indicates what is the object(s) that
it contains while the type of an attribute indicates the type
of the contained object(s). Thus, there must be a consistency
between the name and type, i.e., when the name suggests a
single instance the type must also do.

Example In the example shown in Fig. 18, attribute target of type
Vector, it is unclear whether a change affects one or multi-
ple instances in the collection.

Consequences Lack of understanding of the class state/associations. When
such attribute changes, one would not know whether the
change impacts a one or multiple objects.

Example solution The inconsistency in the example shown in Fig. 18 can be
resolved by renaming the attribute to targetCritics or simply
critics.

Developers’ perception

External Only 11 participants (39%) perceived this practice as ‘Poor’
or ‘Very poor’. 11 participants (39%) perceived this LA as
‘Neither poor nor good’, and 7 of them justified their choice
to the lack of context. In other words, whether attribute target

of type Vector is a good or poor naming, it depends on whether
the target is the entire collection or selected objects contained
in the collection. 6 participants (21%) perceived this practice
as ‘Good’ or ‘Very good’ assuming that target refers to the
entire collection.

B.5

0% 25% 50% 75% 100%

8%15%19%54%4%

Very poor Poor Neither Good Very good

B.6

0% 25% 50% 75% 100%

7%14%66%14%

Very poor Poor Neither Good Very good

C.1

0% 25% 50% 75% 100%

4%14%14%54%14%

Very poor Poor Neither Good Very good

C.2

0% 25% 50% 75% 100%

7%7%4%41%41%

Very poor Poor Neither Good Very good

D.1

0% 25% 50% 75% 100%

7%14%39%29%11%

Very poor Poor Neither Good Very good

D.2

0% 25% 50% 75% 100%

13%10%57%20%

Very poor Poor Neither Good Very good

E.1

0% 25% 50% 75% 100%

7%17%62%14%

Very poor Poor Neither Good Very good

F.1

0% 25% 50% 75% 100%

8%15%54%23%

Very poor Poor Neither Good Very good

F.2

0% 25% 50% 75% 100%

4%4%63%30%

Very poor Poor Neither Good Very good

�2

Internal Internal developers suggested renaming for attribute
mInstalledPackageInfo of type PackageInfo[]. Regarding at-
tribute projectorImage of type IplImage[] a developer shared
“Could go either way - change or keep. Maybe rename to
projectorImagePyramid (because it is one image at different
resolutions) but it gets too long.”. One developer expressed
a concern regarding the LA as follows: “There are technical
terms that will most likely sound like plural to an expert of
the domain”.

38 Venera Arnaoudova et al.

D.2 - Name suggests Boolean but type does notD.2 - Name suggests Boolean but type does not

An attribute name suggests that its value is true or false, while its declaring
type is not Boolean and the declared type and values are not documented.

Rationale The name of an attribute and its type must be consistent in
a way that when the name suggests that a Boolean value is
contained then the declared type must be indeed Boolean.

Example Fig. 19 shows one such case defined in class
ExceptionHandlingFlowContext. The attribute name—
isReached—suggests that the value will be true if something
is reached, false otherwise. However, the declaring type is not
Boolean.

Consequences The developer would expect to be able to test the attribute
in a control flow statement condition. However, this is not
the case, especially in cases like the one in Fig. 19, for which
the returned type is an array, therefore it is not clear how to
handle this attribute.

Example solution To resolve the inconsistency in the example shown in Fig. 19,
the type of the array can be changed to boolean[] or a
comment should be added to documment how the values are
treated, e.g., “0 indicates ‘false’, every other value is treated
as ‘true’.

Developers’ perception

External 23 participants (77%) perceived this practice as at least ‘Poor’
when we showed them attribute isReached of type int[]; they
expected at least an array of Boolean values. A participant
suggested reachedItems as a more appropriate name. From the
remaining participants, 3 perceived the practice as ‘Neither
poor nor good’ (10%) and 4 as ‘Good’ (13%) and assumed
values are 0 for false and 1 for true.

B.5

0% 25% 50% 75% 100%

8%15%19%54%4%

Very poor Poor Neither Good Very good

B.6

0% 25% 50% 75% 100%

7%14%66%14%

Very poor Poor Neither Good Very good

C.1

0% 25% 50% 75% 100%

4%14%14%54%14%

Very poor Poor Neither Good Very good

C.2

0% 25% 50% 75% 100%

7%7%4%41%41%

Very poor Poor Neither Good Very good

D.1

0% 25% 50% 75% 100%

7%14%39%29%11%

Very poor Poor Neither Good Very good

D.2

0% 25% 50% 75% 100%

13%10%57%20%

Very poor Poor Neither Good Very good

E.1

0% 25% 50% 75% 100%

7%17%62%14%

Very poor Poor Neither Good Very good

F.1

0% 25% 50% 75% 100%

8%15%54%23%

Very poor Poor Neither Good Very good

F.2

0% 25% 50% 75% 100%

4%4%63%30%

Very poor Poor Neither Good Very good

�2

Internal One questionnaire containing an example of this LA was an-
swered. For attribute depends of type String, the developer
says that the name is well chosen as it matches standards of
an imported library. The same developer also find it obvious
that the field contains a reference to the packages on which
the class depends.

Causes Developers’ decision.

Linguistic Antipatterns: What They Are and How Developers Perceive Them 39

E.1 - Says many but contains oneE.1 - Says many but contains one

Attribute name suggests multiple objects, but its type suggests a single one.

Rationale The name and type of an attribute must be consistent in a
way that when the name suggests multiple objects the type
must also do. If this is not the case the documentation mush
state the rationale behind such inconsistency or the attribute
must be renamed to include the implicit aggregation function.

Example In the example shown in Fig. 20, the attribute name, de-
fined in class SAXParserBase, suggests that it contains statistics
whereas its type is Boolean.

Consequences Lack of understanding of the impact of attribute changes (see
also Says one but contains many).

Example solution A solution for the example shown in Fig. 20 would be to
rename the attribute to statisticsEnabled.

Developers’ perception

External 22 participants (76%) perceived this practice as ‘Poor’ or
‘Very poor’. 2 of the remaining 7 participants—5 partici-
pants (17%) perceived this practice as ‘Neither poor nor good’
and 2 participants (7%) perceived this practice as ‘Good’—
suggested that the attribute is a flag indicating whether statis-
tics are enabled. 2 of them also suggested to add comments
to improve understandability.

B.5

0% 25% 50% 75% 100%

8%15%19%54%4%

Very poor Poor Neither Good Very good

B.6

0% 25% 50% 75% 100%

7%14%66%14%

Very poor Poor Neither Good Very good

C.1

0% 25% 50% 75% 100%

4%14%14%54%14%

Very poor Poor Neither Good Very good

C.2

0% 25% 50% 75% 100%

7%7%4%41%41%

Very poor Poor Neither Good Very good

D.1

0% 25% 50% 75% 100%

7%14%39%29%11%

Very poor Poor Neither Good Very good

D.2

0% 25% 50% 75% 100%

13%10%57%20%

Very poor Poor Neither Good Very good

E.1

0% 25% 50% 75% 100%

7%17%62%14%

Very poor Poor Neither Good Very good

F.1

0% 25% 50% 75% 100%

8%15%54%23%

Very poor Poor Neither Good Very good

F.2

0% 25% 50% 75% 100%

4%4%63%30%

Very poor Poor Neither Good Very good

�2

Internal Developers would resolve this LA by changing the implemen-
tation for attribute flags of type unsigned char containing mul-
tiple bit flags by “expanding it to become a bitfield”. An exam-
ple where developers, perceived the “inconsistency too minor
to introduce changes to code working for years” is attribute
named codecs of type ImageCodecInitializer which is an initial-
izer for multiple codecs.

Causes Not enough thought, reuse, developers’ decision.

40 Venera Arnaoudova et al.

F.1 - Attribute name and type are oppositeF.1 - Attribute name and type are opposite

The name of an attribute is in contradiction with its type as they contain
antonyms.

Rationale The name and declaring type of an attribute are expected to
be consistent with each other and thus one must not contra-
dict the other.

Example The example of Fig. 21 shows an attribute of class
ActionNavigability. The contradiction comes form the use of
the antonyms “start” and “end”, one being part of the type
of the attribute, the other being part of its name.

Consequences This kind of misleading attribute naming can induce wrong
assumptions. For example, whether a Boolean attribute con-
tains information that can be used directly in a control flow
statement condition, or whether it has to be negated. Simi-
larly, prefixes/suffixes such as “start” and “end” could confuse
the developer about the direction a data structure should be
traversed.

Example solution One way to resolve to inconsistency in the example shown
in Fig. 21 would be to rename class MAssociationEnd

to MAssociationExtremity. Thus, an object of type
MAssociationExtremity called start would mean that the
object is the start of the association and will not cause a
confusion.

Developers’ perception

External 20 participants (77%) perceived this practice as ‘Poor’ or
‘Very poor’. From the remaining participants, 4 (15%) of them
indicated that this naming may or may not be appropriate,
based on the context (thus perceiving it as ‘Neither poor nor
good’); and 2 (8%) of them perceived this practice as ‘Good’
and believed that the naming is perfectly legitimate (i.e., it is
not confusing to deal with “starting end and finishing end”)
though one recommended comments to clarify this inconsis-
tency.

B.5

0% 25% 50% 75% 100%

8%15%19%54%4%

Very poor Poor Neither Good Very good

B.6

0% 25% 50% 75% 100%

7%14%66%14%

Very poor Poor Neither Good Very good

C.1

0% 25% 50% 75% 100%

4%14%14%54%14%

Very poor Poor Neither Good Very good

C.2

0% 25% 50% 75% 100%

7%7%4%41%41%

Very poor Poor Neither Good Very good

D.1

0% 25% 50% 75% 100%

7%14%39%29%11%

Very poor Poor Neither Good Very good

D.2

0% 25% 50% 75% 100%

13%10%57%20%

Very poor Poor Neither Good Very good

E.1

0% 25% 50% 75% 100%

7%17%62%14%

Very poor Poor Neither Good Very good

F.1

0% 25% 50% 75% 100%

8%15%54%23%

Very poor Poor Neither Good Very good

F.2

0% 25% 50% 75% 100%

4%4%63%30%

Very poor Poor Neither Good Very good

�2

Internal All internal developers perceived this practice as ‘Poor’ or
‘Very poor’. Attribute top index of type bottom index is an ex-
ample of this LA that internal developers would rename.

Linguistic Antipatterns: What They Are and How Developers Perceive Them 41

F.2 - Attribute signature and comment are oppositeF.2 - Attribute signature and comment are opposite

Attribute declaration is in contradiction with its documentation.

Rationale The comment of an attribute clarifies its intent and as
such there must be no contradiction between the attribute’s
comment and declaration.

Example The example in Fig. 22 shows an attribute named
INCLUDE NAME DEFAULT, defined in class EncodeURLTransformer.
However, its comment says “Configuration default exclude
pattern”. Whether the pattern is included or excluded is
therefore unclear from the comment and name.

Consequences A first consequence may be increased comprehension effort
as without a deep analysis of the source code, the developer
might not clearly understand the role of the attribute. As
another risk may be that one simply assumes the intent,
i.e., trust the name or the comment, without investigating
which of the two is correct.

Example solution To resolve the inconsistency in Fig. 22, the comment needs
to be corrected to document the “default include pattern”
thus being consistent with the name of the attribute—
i.e., INCLUDE NAME DEFAULT.

Developers’ perception

External A large majority of participants,i.e., 25 participants (93%),
perceived this practice as ‘Poor’ or ‘Very poor’. One partic-
ipant commented: “The most pernicious issue is that most
of coders will focus on the meaning of .*/@href=|.*/action=

|frame /@src= (whatever it means) although it is of paramount
importance to check the ’exclude/include’ property; depending
on coders’ trend to check first the comment or the name of the
member!”. Another participant commented: “We don’t know
who to believe the comments or the attribute name”. Only 2
participants (7%) were more lenient with their perception—1
participant perceived this practice as ‘Neither poor nor good’
and 1 participant as ‘Good’—one of which commented that
one is able to “get the intent”.

B.5

0% 25% 50% 75% 100%

8%15%19%54%4%

Very poor Poor Neither Good Very good

B.6

0% 25% 50% 75% 100%

7%14%66%14%

Very poor Poor Neither Good Very good

C.1

0% 25% 50% 75% 100%

4%14%14%54%14%

Very poor Poor Neither Good Very good

C.2

0% 25% 50% 75% 100%

7%7%4%41%41%

Very poor Poor Neither Good Very good

D.1

0% 25% 50% 75% 100%

7%14%39%29%11%

Very poor Poor Neither Good Very good

D.2

0% 25% 50% 75% 100%

13%10%57%20%

Very poor Poor Neither Good Very good

E.1

0% 25% 50% 75% 100%

7%17%62%14%

Very poor Poor Neither Good Very good

F.1

0% 25% 50% 75% 100%

8%15%54%23%

Very poor Poor Neither Good Very good

F.2

0% 25% 50% 75% 100%

4%4%63%30%

Very poor Poor Neither Good Very good

�2

Internal All internal developers perceived this practice as ‘Poor’
or ‘Very poor’. An example where developers believe that
a renaming is needed is isOrdered commented as True if
the underlying table is BTREE UNORDERED. However,
developers believe that no action need to be undertaken
for GC start time documented as “Time at which we stopped
world.” because “stop (the world) is probably synonym to
start for GC people”.

42 Venera Arnaoudova et al.

C2.java

228 */
229 public boolean isNavigateBackEnabled() {
230 boolean enabled = false;
231 if (this._isBackEnabled == 1) {
232 return true;
233 } else {
234 if (this._isBackEnabled != 0) {
235 enabled = this.navigateBack(false) != null;
236 }
237 }
238 return enabled;
239 }
240
241 /**
242 * Returns true if this listener has a target for a
243 * back navigation. Only one listener needs to return
244 * true for the back button to be enabled.
245 */
246 public boolean isNavigateForwardEnabled() {
247 boolean enabled = false;
248 if (this._isForwardEnabled == 1) {
249 enabled = true;
250 } else {
251 if (this._isForwardEnabled != 0) {
252 enabled =
253 this.navigateForward(false) != null;
254 }
255 }
256 return enabled;
257 }
258
259
260 } /* end class NavigationHistory */
261

Page 7

Fig. 17 Method signature and comment are opposite (C.2).

D1.java

442 this.insertUpdate(e);
443 }
444
445 public void changedUpdate(final DocumentEvent e) {
446 System.out.println(this.getClass().getName() + " changed");
447 // Apparently, this method is never called.
448 }
449
450 public void itemStateChanged(final ItemEvent e) {
451 final Object src = e.getSource();
452 if (src == this._priority) {
453 // System.out.println("class keywords now is " +
454 // _keywordsField.getSelectedItem());
455 this.setTargetPriority();
456 } else if (src == this._useClar) {
457 // System.out.println("class MVisibilityKind now is " +
458 // _visField.getSelectedItem());
459 this.setTargetUseClarifiers();
460 } else {
461 System.out.println("unknown itemStateChanged src: " +

src);
462 }
463 }
464
465 } /* end class CriticBrowserDialog */
466
467 class TableModelCritics extends AbstractTableModel implements
468 VetoableChangeListener, DelayedVChangeListener {
469 @SuppressWarnings("rawtypes")
470 // //////////////
471 // instance varables
472
473 Vector _target;
474
475 // //////////////
476 // constructor
477 public TableModelCritics() {
478 }
479
480 // //////////////
481 // accessors
482 public void setTarget(final Vector critics) {
483 this._target = critics;
484 // fireTableStructureChanged();

Page 12

Fig. 18 Says one but contains many (D.1).

D2.java

1 package org.eclipse.jdt.internal.compiler.flow;
2
3 /*
4 * (c) Copyright IBM Corp. 2000, 2001.
5 * All Rights Reserved.
6 */
7
8 /**
9 * Reflects the context of code analysis, keeping track of enclosing
try

10 * statements, exception handlers, etc...
11 */
12 public class ExceptionHandlingFlowContext extends FlowContext {
13 ReferenceBinding[] handledExceptions;
14
15 public final static int BitCacheSize = 32; // 32 bits per int
16
17 int[] isReached;
18
19 int[] isNeeded;
20 UnconditionalFlowInfo[] initsOnExceptions;
21 ObjectCache indexes = new ObjectCache();
22 boolean isMethodContext;
23
24 public ExceptionHandlingFlowContext(final FlowContext parent,
25 final AstNode associatedNode,
26 final ReferenceBinding[] handledExceptions, final

BlockScope scope,
27 final UnconditionalFlowInfo flowInfo) {
28
29 super(parent, associatedNode);
30 this.isMethodContext = scope == scope.methodScope();
31 /*
32 * // for a method, append the unchecked exceptions to the

handled
33 * exceptions collection
34 *
35 * if (scope.methodScope() == scope) { int length;

System.arraycopy(
36 * handledExceptions, 0, (handledExceptions = new
37 * ReferenceBinding[(length = handledExceptions.length) +

2]), 0,
38 * length); handledExceptions[length] =
39 * scope.getJavaLangRuntimeException();

handledExceptions[length + 1] =

Page 1

Fig. 19 Name suggests Boolean but type does not (D.2).

B6.java

31 import javax.xml.parsers.SAXParserFactory;
32
33 import org.xml.sax.AttributeList;
34 import org.xml.sax.HandlerBase;
35 import org.xml.sax.InputSource;
36 import org.xml.sax.SAXException;
37
38 /**
39 * @author Jim Holt
40 */
41
42 public abstract class SAXParserBase extends HandlerBase {
43
44 // ///

/
45 // constants
46
47 protected static final String _returnString = new String("\n

");
48
49 // ///

/
50 // constructors
51
52 public SAXParserBase() {
53 }
54
55 // ///

/
56 // static variables
57
58 protected static boolean _dbg = false;
59 protected static boolean _verbose = false;
60
61 private static XMLElement _elements[] = new XMLElement[100];
62 private static int _nElements = 0;
63 private static XMLElement _freeElements[] = new XMLElement[100];
64 private static int _nFreeElements = 0;
65
66 private static boolean _stats = true;
67
68 private static long _parseTime = 0;
69
70 // ///

/

Page 2

Fig. 20 Says many but contains one (E.1).

F.java

1 /* (c) Copyright 2013 and following years, Venera Arnaoudova,
22
23 public class F {
24
25 // Example F1: Attribute name and type use antonyms, i.e., words

with
26 // opposite meaning:
27 MAssociationEnd start2;
28
29 MAssociationEnd start = null;
30
31 // F2: Attribute comments and signature use antonyms, i.e., words

with
32 // opposite meaning:
33
34 /**
35 * Configuration default include pattern, ie .*\/@href|.*\/

@action|frame/@src
36 */
37 public final static String INCLUDE_NAME_DEFAULT = "";
38
39 }
40

Page 1

Fig. 21 Attribute name and type are opposite (F.1).

F.java

1 /* (c) Copyright 2013 and following years, Venera Arnaoudova,
22
23 public class F {
24
25 // Example F1: Attribute name and type use antonyms, i.e.,

words with
26 // opposite meaning:
27 MAssociationEnd start2;
28
29 MAssociationEnd start = null;
30
31 // F2: Attribute comments and signature use antonyms, i.e.,

words with
32 // opposite meaning:
33
34 /**
35 * Configuration default exclude pattern,
36 * ie .*\/@href|.*\/@action|frame/@src
37 */
38 public final static String INCLUDE_NAME_DEFAULT
39 = ".*/@href=|.*/@action=|frame/@src=";
40
41
42 }
43

Page 1

Fig. 22 Attribute signature and comment are opposite (F.2).

Linguistic Antipatterns: What They Are and How Developers Perceive Them 43

4.3.1 Summary of developers’ perception on LAs

We can summarize what we have learned from the studies on LAs perceptions as
follows:

Does more than what it says (A):
Methods that do more than what they say seem to be perceived acceptable in
some situations by both external and internal developers. In such situations the
surveyed developers tend to infer the behavior suggested by the name. Sometimes
such inference is wrong and may lead to faults. This was the case with the example
of “Is” returns more than a Boolean (A.2) where 3 of the external developers
wrongly mapped the return values for method isValid and assumed 2 possible
return values whereas in reality there are 3.

Says more than what it does (B):
Developers are less lenient with methods that say more than what they do. LAs
from this category are perceived often as unacceptable as the expectations resulting
from the method’s name/documentation are not fulfilled—as for method isValid

with void return type, example of Not answered question (B.4)—or it is unclear
how to obtain the result—as for method getMethodBodies with void return type,
example of “Get” method does not return (B.3).

Does the opposite (C):
Developers perceive as poor practices methods that do the opposite of what they
say. When the inconsistency is between the method’s name and return type devel-
opers try to infer the actual behavior from the method’s comments—which they
correctly did for the particular examples that we showed. However, developers
are less lenient when the inconsistency is between the method’s signature and
comments as they wouldn’t know which one to trust.

Contains more than what it says (D):
The surveyed developers are more lenient with attributes that contain more than
what they say when they feel they need more context—e.g., for Says one but con-
tains many (D.1) some developers explained that whether it is a poor practice
would depend on the context and in the particular example the attribute decla-
ration is not sufficient to understand the intent. Thus, developers would need to
browse the source code and possibly other sources of documentation to clarity the
attribute’s intent. However developers perceived as poor practice attributes whose
Name suggests Boolean but type does not. We suspect that examples of LAs in this
category may be more likely to increase comprehension effort.

Says more than what it contains (E):
Attributes that say more than what they contain are perceived more severely by
external developers; internal developers are more lenient. Thus, although LAs in
this category may impede comprehension of newcomers—they may have difficulties
to infer the implicit aggregation function—it seems that developers familiar with
the code simply get used to and have less issues with those LAs.

Contains the opposite (F):
Attributes that contain the opposite of what they say are perceived as poor prac-
tices by the majority of the surveyed developers, especially when the inconsistency

44 Venera Arnaoudova et al.

occurs between the attribute’s signature and comments—similar to methods that
do the opposite of what they say.

4.4 LAs perceived as particularly poor

Based on the two studies with developers we distill a subset of 11 LAs (see Ta-
ble 8) that are perceived by external (column SI) and–or internal (column SII)
developers as particularly poor practices. From Study I, we consider that LAs are
perceived as particularly poor when they are perceived as ‘Poor’ or ‘Very poor’
by at least 75% of the external developers. As proportions for Study II are not
meaningful—due to the limited number of data points—we consider that LAs
are perceived as particularly poor when there is a full agreement among internal
developers—i.e., all internal developers perceived them as ‘Poor’ or ‘Very poor’—
or when internal developers took an action to resolve them.

There are three LAs that both external and internal developers find particularly
unacceptable. Those are LAs concerning the state of an entity (i.e., attributes) and
they belong to the “says more than what it does” (B) and “contains the opposite”
(F) categories—i.e., Not answered question (B.4), Attribute name and type are
opposite (F.1), and Attribute signature and comment are opposite (F.2).

In addition, internal developers appear to be concerned with “Is” returns more
than a Boolean (A.2). External developers are more lenient with this practice as
only 60% of them consider it as poor. However, we believe that A.2 may cause
comprehension problems as 3 of the external developers that perceive this practice
as good wrongly assumed the return values.

Finally, we observe that external developers perceive as particularly unaccept-
able LAs from all categories.

Table 8 LAs perceived as particularly poor.

SI SII

A.2 “Is” returns more than a Boolean X

A.3 “Set” method returns X X

B.2 Validation method does not confirm X

B.3 “Get” method does not return X

B.4 Not answered question X X

B.6 Expecting but not getting a collection X

C.2 Method signature and comment are opposite X

D.2 Name suggests Boolean but type does not X

E.1 Says many but contains one X

F.1 Attribute name and type are opposite X X

F.2 Attribute signature and comment are opposite X X

Linguistic Antipatterns: What They Are and How Developers Perceive Them 45

5 Threats to Validity

Threats to construct validity concern the relation between theory and observation,
and they are mainly related to the accuracy of the measurements we performed
to address our research questions. We manually validated the instances of the
LAs we showed to the participants, and we selected a representative sample of the
different kinds of LAs. Clearly, there is always a risk that the developer’ perception
is bound to the particular instance of an LA rather than to its category. However,
we limited this threat by collecting comments helping us to understand whether
the LAs are indeed a general problem—which we found most of the times to be
the case—or whether, instead, it depends on the context.

Regarding the measurement of the participants’ perception, we used Likert
scale [Oppenheim, 1992], which helps to aggregate and compare results from mul-
tiple participants.

Threats to internal validity concern factors that could have influenced our re-
sults. When asking participants to evaluate code snippets, we formulate a specific
question thus possibly affecting the internal validity of the study as participants
may guess the expected answer [Shull et al., 2007]. To cope with this threat we
also evaluate a set of examples not containing LAs and show a statistically sig-
nificant difference in developers’ evaluations. In Study I, we analyzed the effect
of the experience, the main programming language, and occupation of the partic-
ipants. Another threat to validity is that external developers are only provided
with code snippets and thus unaware of the context, i.e., the particular project
that a snippet belongs to. Providing context may lead to more lenient evaluations
by external developers as they may resolve the inconsistencies from other places in
the code (e.g., from the way the entity is used), which could bias the perception of
the practice itself. Also, as participants in Study I are external to the project, the
lack of domain knowledge may have impacted their perception. We believe that
this threat is limited as LAs concern general inconsistencies and thus are mainly
domain independent.

Due to the limited number of data points, we did not perform any particular
analysis in Study II, where we discussed results qualitatively rather than quanti-
tatively. Our results may have been impacted by the fact that participants in
Study II only validate a subset of the LAs. More data points for each LA may pro-
duce different results. More important, we have conducted the two studies to gain
insights from different perspectives, i.e., both external and internal developers. A
threat for Study II is that internal developers could have been more lenient with
their own code. We mitigated this threat by asking them to motivate their answer
and, in any case, also for Study II we found a pretty high proportion of poor/very
poor perception of LAs.

As shown in Table 3 Note that the majority of the participants are native
French speakers and that only for 13% of the participants are native English
speakers. However, we believe that this threat to validity is limited as our ques-
tions relate to basic grammar rules (e.g., singular/plural) and we analyze the
justification for each question to ensure that the participants properly understood
the question.

Threats to external validity concern the generalizability of our findings. In
terms of objects, the two studies have been conducted on three and eight systems
respectively. Although we cannot really ensure full diversity [Nagappan et al.,

46 Venera Arnaoudova et al.

2013], as explained in Section 3, the chosen systems are pretty different in terms
of size and application domain. In terms of subjects, the studies involved both
students and professionals (from industry and from the open-source community),
as well as developers of projects from which the LAs were detected and developers
of other projects.

6 Related Work

This section discusses related work, concerning (i) the relationship between source
code lexicon and software quality (Section 6.1), (ii) the identification and analysis
of lexicon-related inconsistencies (Section 6.2), and (iii) empirical studies aimed
at investigating developers’ perception of code smells (Section 6.3).

6.1 Role of Source code identifiers in Software Quality

Many authors have shown that the quality of the lexicon is an important factor
for program comprehensibility.

As discussed in the introduction, Brooks [1983] considers identifiers and com-
ments as part of the internal indicators for the meaning of a program.

Shneiderman [1977] presents a syntactic/semantic model of programmer be-
havior. The syntactic knowledge about a program is built through a perception
process; it is precise, language dependent and easily forgettable. The semantic
knowledge is built through cognition; it is language independent and concerns im-
portant concepts at different levels of details. On the basis of several experiments,
Shneiderman and Mayer [1975] observed a significantly better program compre-
hension by subjects with commented programs. Higher number of subjects located
bugs in commented programs compared to not commented programs, although the
difference is not statistically significant. They argue that program comments and
mnemonic identifiers simplify the conversion process from the program syntax to
the program internal semantic representation.

Chaudhary and Sahasrabuddhe [1980] argue that the psychological complex-
ity of a program—i.e., the characteristics that make a program difficult to be
understood—is an important aspect of program quality. They identify several
features that contribute to the psychological complexity one of which is termed
“meaningfulness”. They argue that meaningful variable names and comments fa-
cilitate program understanding as they facilitate the relation between the program
semantics and the problem domain. An experiment with students using different
versions of FORTRAN programs—with and without meaningful names—confirms
the hypothesis.

Weissman [1974a] also considers that the program form—e.g., comments, choice
of identifiers, paragraphing—is a an important factor that affects program com-
plexity, in particular suggesting that meaningless and incorrect comments can be
harmful and that mnemonic names of reasonable length ease program understand-
ing. However empirical evidence showed that comments lead to faster but more
error prone hand simulation of a program [Weissman, 1974b]. Sheil [1981] reviews
studies on the psychological research on programming, and argues that the in-

Linguistic Antipatterns: What They Are and How Developers Perceive Them 47

effectiveness of the research in the domain is partly due to the unsophisticated
experimental techniques.

Other authors have focused their attention on source code identifiers and their
importance for various tasks in software engineering. Among them, Caprile and
Tonella [1999, 2000], Merlo et al. [2003], and Anquetil and Lethbridge [1998] show
that identifiers carry important source of information and that identifiers are of-
ten the starting point for program comprehension. Deissenbock and Pizka [2005]
provided guidelines for the production of high-quality identifiers. Later, Lawrie
et al. [2006, 2007] performed an empirical study to assess the quality of source
code identifiers, and suggest that the identification of words composing identifiers
could contribute to a better comprehension.

6.2 Identifying inconsistencies in the lexicon

Previous studies have shown that poor source code lexicon correlates with faults
[Abebe et al., 2012], and negatively affects concept location [Abebe et al., 2011].

Abebe and Tonella [2011] extract concepts and relations between concepts from
program identifiers to build an ontology. They use the ontology to help developers
in choosing identifiers consistent with the concepts already used in the system
[Abebe and Tonella, 2013]. To this aims, given partially written identifiers, they
suggest and rank candidate completions and replacements. We complement the
above work, as Abebe and Tonella focus on the quality of the lexicon, whereas we
identify inconsistencies among identifiers, source code, and comments.

De Lucia et al. [2011] proposed an approach and tool—named COCONUT—
to ensure consistency between the lexicon of high-level artifacts and of source
code. In their approach, the inconsistent lexicon is measured in terms of textual
similarity between high-level artifacts traced to the code, and the code itself. In
addition, COCONUT uses the lexicon of high-level artifacts to suggest appropriate
identifiers.

Tan et al. [2007, 2011, 2012] proposed several approaches to detect inconsis-
tencies between code and comments. Specifically, @iComment [Tan et al., 2007]
detects lock- and call-related inconsistencies; the validation made by developers
confirmed 19 of the detected inconsistencies. @aComment [Tan et al., 2011] de-
tects synchronization inconsistencies related to interrupt context, and the eval-
uation by developers confirmed 7 previously unknown bugs. @tComment infers
properties form Javadoc related to null values and exceptions; then, it generates
tests cases by searching for violations of the inferred properties. Also in this case,
Tan et al. reported the detected inconsistencies to the developers who indeed re-
solved 5 of them. Zhong et al. [2011] automatically generate specifications from
API documentation concerning resource usage, namely creation, lock, manipula-
tion, unlock, and closure. They contacted developers of the open-source projects
who confirmed 5 previously unknown defects.

While the approaches described above address inconsistencies specific to certain
source code aspect/implementation technology—i.e., lock/call, null values/exceptions,
synchronization, and resource usage—our approach can be considered as comple-
mentary as it deals with generic naming and commenting issues that can arise in
OO code, and specifically in the lexicon and comments of methods and attributes.

48 Venera Arnaoudova et al.

6.3 Developers’ perception of code smells

Yamashita and Moonen [2013] performed a study—involving 85 professionals—
with the aim of investigating the perception of code smells, in particular, the
degree of awareness of code smells, their severity, and the usefulness of automatic
tool support. Surprisingly, 23 of the participants (32%) were not aware of such code
smells. From the remaining 50 participants, i.e., those that have at least heard of
anti-patterns and code smells, only 3 participants (6%) were not concerned about
the presence of code smells. 47 of the participants (94%) were concerned at a differ-
ent level—10 (20%) were slightly concerned, 11 (22%) were somewhat concerned,
19 (38%) were moderately concerned, and 7 (14%) were extremely concerned. Ya-
mashita and Moonen performed categorical regression analysis and found that the
more familiar participants are with anti-patterns and code smells, the more con-
cerned they are. Palomba et al. [2014] also studied developers’ perceptions of code
smells. They evaluated examples of 12 code smells found in 3 open-source Java
projects from the perspective of 34 external and internal developers. Their results
show that there are some code smells that developers do not perceive as poor
practices. They also observed that for several code smells experienced developers
are more concerned than less experienced developers.

We share with the above works the interest in how developers perceive poor
practices. The main difference between previous work and our work is that while
they evaluate practices that have been out there more than a decade, we study
practices with which developers were not at all familiar with Study I or just in-
troduced to Study II. This could be one of the reasons why a lower number of
participants perceive LAs as ’Poor’ or ’Very Poor’—69% and 51% for Study I and
Study II respectively—as opposed to anti-patterns and code smells—94% when
only considering participants familiar with anti-patterns and code smells. Also,
while they evaluate the awareness and the concern of professionals about the code
smells in general, we focus on evaluating the perception of developers of LAs i)
through the mean of concrete examples thus allowing us to also investigate possible
solutions, and ii) from both perspectives i.e., newcomers (Study I), and internal
developers (Study II).

7 Conclusion and Future Work

This work aimed at investigating the developers’ perception of Linguistic Anti-
patterns (LAs)—i.e., “poor practices in the naming, documentation, and choice
of identifiers in the implementation of an entity, thus possibly impairing program
understanding”—and the extent to which they suggest that such LAs need to
be removed. The studies concerned a catalog of 17 types of LAs—defined in our
previous work [Arnaoudova et al., 2013]—that we conjecture to be poor practices.
In this paper, we rely on the opinion of developers as an indication of the quality of
source code containing such poor practices with the aim of confirming or refuting
our conjecture.

First, we conducted a study involving 30 external developers among graduate
students and professional, i.e., people that did not participate to the development
of the system in which the LAs were detected and unaware of the notion of LAs.
They provided information about their perception of LAs found in 3 Java open-

Linguistic Antipatterns: What They Are and How Developers Perceive Them 49

source projects, and the majority of them (69%) indicated that such LAs are poor
or very poor practices. Overall, developers perceived as more serious ones the
instances where the inconsistency involved both method signature and comments.
The perception of external developers is important as 1) it provides an indication
of the difficulties that newcomers may encounter understanding code that contains
LAs, and 2) it is an unbiased opinion.

In a second study we asked 14 (internal) developers of 7 open-source Java/C++
projects and one C++ commercial system to provide us their perception of LAs
we found in the code of their projects. Internal developers provides us 1) with an
indication whether code containing LAs is problematic even for people that are
familiar with the project and 2) with insights on why LAs occurred in the code
and how can they be refactored. 51% of respondents evaluated LAs as poor or
very poor practices. The percentage is lower compared to the one observed with
external developers, as in some cases internal developers perceive LAs acceptable
in the particular context. When asked why the LAs were possibly introduced—
and developers had elements to answer—they pointed out maintenance activities—
e.g., done by developers different from the original code authors—that deteriorated
the lexicon quality, or lack of attention to naming conventions/comments. For a
conspicuous proportion of LAs (56%) developers highlighted that such LAs should
be removed and, at the time of writing this paper, internal developers had already
resolved 10% of the cases containing LAs that we pointed out. As a result of the
studies with developers, we distill a subset of LAs i) that are perceived as poor
practices by at least 75% of the external developers, ii) that are perceived as poor
practices by all internal developers, or iii) for which internal developers took an
action to remove it. There are three LAs that both external and internal developers
agree on and perceived as particularly poor. Those are LAs concerning the state
of an entity (i.e., attributes) and they belong to the “says more than what it does”
(B) and “contains the opposite” (F) categories—i.e., Not answered question (B.4),
Attribute name and type are opposite (F.1), and Attribute signature and comment
are opposite (F.2). External developers found particularly unacceptable (i.e., more
than 80% of them perceived as poor or very poor) the LAs with a clear dissonance
between code behavior and its lexicon—i.e., “Get” method does not return (B.3),
Not answered question (B.4), Method signature and comment are opposite (C.2),
and Attribute signature and comment are opposite (F.2). Given the extremely high
level of agreement on those LAs, our results encourage the use of a recommender
tool highlighting LAs, like such as the Checkstyle extension we developed and
described in Section 2.

Clearly, one must consider that, whether or not developers could remove LAs
also depends on the impact that this can have on the whole system. In other words,
developers are less prone to remove LAs if this has a large impact on the code, as
such change can be too risky. Instead, it can be more useful to point out LAs as
developers write source code—e.g., on-the-fly using our Linguistic AntiPattern
Detector (LAPD) Checkstyle plugin— thus removing or limiting the impact
on other code entities.

Work-in-progress includes: (i) proposing automatic refactorings to resolve LAs,
and (ii) performing a study involving developers using (or not) the LAPD Check-
style plugin, with the aim of observing to what extent the recommendations will
be followed, and to what extent will the code lexicon be improved.

50

Acknowledgements The authors would like to thank the participants to the two studies for
their precious time and effort. They made this work possible.

Appendices

A Detection

A.1 - “Get” - more than an accessor: Find accessor methods by identifying
methods whose name starts with ‘get’ and ends with a substring that corresponds
to an attribute in the same class and where the attribute’s declared type and the
accessor’s return type are the same. Then, identify those accessors that are per-
forming more actions than returning the corresponding attribute. Cases where the
attribute is set before it is returned (i.e., Proxy and Singleton design patterns)
should not be considered as part of this LA. For a detection built on top of an
Abstract Syntax Tree (AST) expressions other than a return statement—where
the attribute is returned—can be allowed only if they are child of a conditional
check for null value. Other measures for complexity, such as LOC or McCabe’s
Cyclomatic Complexity, can be used for a simpler but less accurate detection.
A.2 - “Is” returns more than a Boolean: Find methods starting with “is”
whose return type is not Boolean.
A.3 - “Set” method returns: Find modifier methods (or more generally meth-
ods whose name starts with “set”) and whose return type is different from void.
A.4 - Expecting but not getting a single instance: Find methods return-
ing a collection (e.g., array, list, vector, etc.) but whose name ends with a singular
noun and does not contain a word implying a collection (e.g., array, list, vector,
etc.).
B.1 - Not implemented condition: Find methods with at least one conditional
sentence in comments but with no conditional statements in the implementation
(e.g., no control structures or ternary operators).
B.2 - Validation method does not confirm: Find validation methods (e.g., method
names starting with “validate”, “check”, “ensure”) whose return type is void and
that do not throw an exception.
B.3 - “Get” method does not return: Find methods where the name suggests
a return value (e.g., names starting with “get”, “return”) but where the return
type is void.
B.4 - Not answered question: Find methods whose name is in the form of
predicate (e.g., starts with “is”, “has”) and whose return type is void.
B.5 - Transform method does not return: Find methods whose name sug-
gests a transformation of an object, (e.g., toSomething, source2target) but its return
type is void.
B.6 - Expecting but not getting a collection: The method name suggests
that it returns (e.g., starts with “get”, “return”) multiple objects (e.g., ends with
a plural noun), however the return type is not a collection.
C.1 - Method name and return type are opposite: Find methods where the
name and return type contain antonyms.
C.2 - Method signature and comment are opposite: Find methods whose
name or return type have an antonym relation with its comment.

51

D.1 - Says one but contains many: Find attributes having a name ending
with a singular noun and having a collection as declaring type.
D.2 - Name suggests Boolean but type does not: Find attributes whose
name is structured as a predicate, i.e., starting with a verb in third person (e.g., “is”,
“has”) or ending with a verb in gerund/present participle, but whose declaring type
is not Boolean.
E.1 - Says many but contains one: Find attributes having a name ending with
a plural noun, however their type is not a collection neither it contains a plural
noun.
F.1 - Attribute name and type are opposite: Find attributes whose name
and declaring type contain antonyms.
F.2 - Attribute signature and comment are opposite: Find attributes whose
name or declaring type have an antonym relation with its comment.

References

Abbes, M., F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, An empirical study of
the impact of two antipatterns, Blob and Spaghetti Code, on program compre-
hension, in Proceedings of the European Conference on Software Maintenance
and Reengineering (CSMR), pp. 181–190, 2011.

Abebe, S., and P. Tonella, Towards the extraction of domain concepts from the
identifiers, in Proceedings of the Working Conference on Reverse Engineering
(WCRE), pp. 77–86, 2011.

Abebe, S., and P. Tonella, Automated identifier completion and replacement, in
Proceedings of the European Conference on Software Maintenance and Reengi-
neering (CSMR), pp. 263–272, 2013.

Abebe, S. L., S. Haiduc, P. Tonella, and A. Marcus, The effect of lexicon bad
smells on concept location in source code, in Proceedings of the International
Working Conference on Source Code Analysis and Manipulation (SCAM), pp.
125–134, 2011.

Abebe, S. L., V. Arnaoudova, P. Tonella, G. Antoniol, and Y.-G. Guéhéneuc,
Can lexicon bad smells improve fault prediction?, in Proceedings of the Working
Conference on Reverse Engineering (WCRE), pp. 235–244, 2012.

Anquetil, N., and T. Lethbridge, Assessing the relevance of identifier names in a
legacy software system, in Proceedings of the International Conference of the
Centre for Advanced Studies on Collaborative Research (CASCON), pp. 213–
222, 1998.

Arnaoudova, V., M. Di Penta, G. Antoniol, and Y.-G. Guéhéneuc, A new family of
software anti-patterns: Linguistic anti-patterns, in Proceedings of the European
Conference on Software Maintenance and Reengineering (CSMR), pp. 187–196,
2013.

Arnaoudova, V., L. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol, and Y.-G.
Guéhéneuc, Repent: Analyzing the nature of identifier renamings, IEEE Trans-
actions on Software Engineering (TSE), 40 (5), 502–532, 2014.

Brooks, R., Towards a theory of the comprehension of computer programs, Inter-
national Journal of Man-Machine Studies, 18 (6), 543–554, 1983.

52

Brown, W. J., R. C. Malveau, W. H. Brown, H. W. McCormick III, and T. J.
Mowbray, Anti Patterns: Refactoring Software, Architectures, and Projects in
Crisis, 1st ed., John Wiley and Sons, 1998a.

Brown, W. J., R. C. Malveau, H. W. M. III, and T. J. Mowbray, AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis, John Wiley & Sons,
Inc., 1998b.

Caprile, B., and P. Tonella, Nomen est omen: Analyzing the language of func-
tion identifiers, in Proceedings of Working Conference on Reverse Engineering
(WCRE), pp. 112–122, 1999.

Caprile, B., and P. Tonella, Restructuring program identifier names, in Proceedings
of the International Conference on Software Maintenance (ICSM), pp. 97–107,
2000.

Chaudhary, B. D., and H. V. Sahasrabuddhe, Meaningfulness as a factor of pro-
gram complexity, in Proceedings of the ACM Annual Conference, ACM ’80, pp.
457–466, ACM, 1980.

De Lucia, A., M. Di Penta, and R. Oliveto, Improving source code lexicon via trace-
ability and information retrieval, IEEE Transactions on Software Engineering,
37 (2), 205–227, 2011.

Deissenbock, F., and M. Pizka, Concise and consistent naming, in Proceedings of
the International Workshop on Program Comprehension (IWPC), pp. 97–106,
2005.

Fowler, M., Refactoring: improving the design of existing code, Addison-Wesley,
1999.

Gamma, E., R. Helm, R.Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object Oriented Software, Addison-Wesley, Boston, MA, USA, 1995.

Glaser, B. G., Basics of grounded theory analysis, Sociology Press, 1992.
Grissom, R. J., and J. J. Kim, Effect sizes for research: A broad practical approach,

2nd edition ed., Lawrence Earlbaum Associates, 2005.
Groves, R. M., F. J. Fowler Jr., M. P. Couper, J. M. Lepkowski, E. Singer, and

R. Tourangeau, Survey Methodology, 2nd edition, Wiley, 2009.
Hintze, J. L., and R. D. Nelson, Violin plots: A box plot-density trace synergism,

The American Statistician, 52 (2), 181–184, 1998.
Jedlitschka, A., and D. Pfahl, Reporting guidelines for controlled experiments in

software engineering, in International Symposium on Empirical Software Engi-
neering, 2005.

Khomh, F., M. Di Penta, and Y.-G. Guéhéneuc, An exploratory study of the im-
pact of code smells on software change-proneness, in Proceedings of the Working
Conference on Reverse Engineering (WCRE), pp. 75–84, 2009.

Khomh, F., M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, An exploratory study
of the impact of antipatterns on class change- and fault-proneness, Empirical
Software Engineering, 17 (3), 243–275, 2012.

Kitchenham, B., S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El Emam, and
J. Rosenberg, Preliminary guidelines for empirical research in software engi-
neering, IEEE Transactions on Software Engineering (TSE), 28 (8), 721–734,
2002.

Lawrie, D., C. Morrell, H. Feild, and D. Binkley, What’s in a name? a study of
identifiers, in Proceedings of the International Conference on Program Compre-
hension (ICPC), pp. 3–12, 2006.

53

Lawrie, D., C. Morrell, H. Feild, and D. Binkley, Effective identifier names for
comprehension and memory, Innovations in Systems and Software Engineering,
3 (4), 303–318, 2007.

Merlo, E., I. McAdam, and R. De Mori, Feed-forward and recurrent neural net-
works for source code informal information analysis, Journal of Software Main-
tenance, 15 (4), 205–244, 2003.

Miller, G. A., WordNet: A lexical database for English, Communications of the
ACM, 38 (11), 39–41, 1995.

Moha, N., Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, DECOR: A method
for the specification and detection of code and design smells, IEEE Transactions
on Software Engineering (TSE’10), 36 (1), 20–36, 2010.

Nagappan, M., T. Zimmermann, and C. Bird, Diversity in software engineering re-
search, in Proceedings of the joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), pp. 466–476, 2013.

Oppenheim, A. N., Questionnaire Design, Interviewing and Attitude Measurement,
Pinter, London, 1992.

Palomba, F., G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshy-
vanyk, Detecting bad smells in source code using change history information, in
Proceedings of the International Conference on Automated Software Engineering
(ASE), pp. 268–278, 2013.

Palomba, F., G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia, Do they really
smell bad? a study on developers’ perception of code bad smells, in International
Conference on Software Maintenance and Evolution (ICSME), p. to appear,
2014.

Parsons, J., and C. Saunders, Cognitive heuristics in software engineering: Apply-
ing and extending anchoring and adjustment to artifact reuse, IEEE Transac-
tions on Software Engineering (TSE), 30 (12), 873–888, 2004.

Prechelt, L., B. Unger-Lamprecht, M. Philippsen, and W. Tichy, Two controlled
experiments assessing the usefulness of design pattern documentation in pro-
gram maintenance, IEEE Transactions on Software Engineering (TSE), 28 (6),
595–606, 2002.

Raţiu, D., S. Ducasse, T. Girba, and R. Marinescu, Using history information to
improve design flaws detection, in Proceedings of the European Conference on
Software Maintenance and Reengineering (CSMR), pp. 223–232, 2004.

Sheil, B. A., The psychological study of programming, ACM Computing Surveys
(CSUR), 13 (1), 101–120, 1981.

Shneiderman, B., Measuring computer program quality and comprehension, In-
ternational Journal of Man-Machine Studies, 9 (4), 465–478, 1977.

Shneiderman, B., and R. Mayer, Towards a cognitive model of progammer behav-
ior, Tech. Rep. 37, Indiana University, 1975.

Shull, F., J. Singer, and D. I. Sjøberg, Guide to Advanced Empirical Software
Engineering, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

Strauss, A. L., Qualitative analysis for social scientists, Cambridge Univsersity
Press, 1987.

Takang, A., P. A. Grubb, and R. D. Macredie, The effects of comments and iden-
tifier names on program comprehensibility: an experiential study, Journal of
Program Languages, 4 (3), 143–167, 1996.

54

Tan, L., D. Yuan, G. Krishna, and Y. Zhou, /*iComment: bugs or bad com-
ments?*/, Proceedings of the ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), 41 (6), 145–158, 2007.

Tan, L., Y. Zhou, and Y. Padioleau, acomment: Mining annotations from com-
ments and code to detect interrupt related concurrency bugs, in Proceedings of
the International Conference on Software Engineering (ICSE), 2011.

Tan, S. H., D. Marinov, L. Tan, and G. T. Leavens, @tComment: Testing Javadoc
comments to detect comment-code inconsistencies, in Proceedings of the Inter-
national Conference on Software Testing, Verification and Validation (ICST),
pp. 260–269, 2012.

Torchiano, M., Documenting pattern use in Java programs, in Proceedings of the
International Conference on Software Maintenance (ICSM), pp. 230–233, 2002.

Toutanova, K., and C. D. Manning, Enriching the knowledge sources used in a
maximum entropy part-of-speech tagger, in Proceedings of the Joint SIGDAT
Conference on Empirical Methods in Natural Language Processing and Very
Large Corpora (EMNLP/VLC-2000), pp. 63–70, Association for Computational
Linguistics, 2000.

Weissman, L., Psychological complexity of computer programs: An experimental
methodology, SIGPLAN Not., 9 (6), 25–36, 1974a.

Weissman, L. M., A methodology for studying the psychological complexity of
computer programs., Ph.D. thesis, 1974b.

Wohlin, C., P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering - An Introduction, Kluwer Academic
Publishers, 2000.

Woodfield, S. N., H. E. Dunsmore, and V. Y. Shen, The effect of modularization
and comments on program comprehension, in Proceedings of the International
Conference on Software Engineering (ICSE), pp. 215–223, 1981.

Yamashita, A., and L. Moonen, Do developers care about code smells? - an ex-
ploratory survey, in Proceedings of the Working Conference on Reverse Engi-
neering (WCRE), pp. 242–251, 2013.

Zhong, H., L. Zhang, T. Xie, and H. Mei, Inferring specifications for resources from
natural language api documentation, Automated Software Engineering, 18 (3-4),
227–261, 2011.

55

Venera Arnaoudova is a research associate at Polytech-
nique Montréal (Canada). She received her bachelor degree
in computer and electrical engineering (major of computer
science) from the engineering school Polytech’Lille (France)
and her master degree in computer science from Concor-
dia University (Canada) in 2008. She received her Ph.D. de-
gree in 2014 from Polytechnique Montréal under the supervi-
sion of Dr. Giuliano Antoniol and Dr. Yann-Gaël Guéhéneuc.
Her research interest is in the domain of software evolu-
tion and particularly, the analysis of source code lexicon
and documentation, empirical software engineering, refac-
toring, patterns, and antipatterns. Her dissertation focused
on the improvement of the code lexicon and its consis-
tency using natural language processing, fault prediction mod-
els, and empirical studies. More information available at:
http://www.veneraarnaoudova.ca/.

Massimiliano Di Penta is associate professor at the Uni-
versity of Sannio, Italy since December 2011. Before that,
he was assistant professor in the same University since De-
cember 2004. His research interests include software main-
tenance and evolution, mining software repositories, empir-
ical software engineering, search-based software engineering,
and service-centric software engineering. He is currently in-
volved as principal investigator for the University of Sannio
in a European Project about code search and licensing issues
(MARKOS - www.markosproject.eu). Previously, he was prin-
cipal investigator in other national and European projects on
topics related to software evolution and service-centric soft-
ware engineering. He is author of over 190 papers appeared in
international journals, conferences and workshops. He serves
and has served in the organizing and program committees of
over 100 conferences such as ICSE, FSE, ASE, ICSM, ICPC,
GECCO, MSR WCRE, and others. He has been general co-

chair of various events, including the 10th IEEE Working Conference on Source Code Analysis
and Manipulation (SCAM 2010), the 2nd International Symposium on Search-Based Soft-
ware Engineering (SSBSE 2010), and the 15th Working Conference on Reverse Engineering
(WCRE 2008). Also, he has been program chair of events such as the 28th IEEE International
Conference on Software Maintenance (ICSM 2012), the 21st IEEE International Conference
on Program Comprehension (ICPC 2013), the 9th and 10th Working Conference on Mining
Software Repository (MSR 2013 and 2012), the 13th and 14th Working Conference on Re-
verse Engineering (WCRE 2006 and 2007), the 1st International Symposium on Search-Based
Software Engineering (SSBSE 2009), and other workshops. He is currently member of the
steering committee of ICSME, MSR, SSBSE, and PROMISE. Previously, he has been steering
committee member of other conferences, including ICPC, SCAM, and WCRE. He is in the
editorial board of IEEE Transactions on Software Engineering, the Empirical Software Engi-
neering Journal edited by Springer, and of the Journal of Software: Evolution and Processes
edited by Wiley.

56

Giuliano Antoniol (Giulio) received his Laurea degree in
electronic engineering from the Universita’ di Padova, Italy,
in 1982. In 2004 he received his PhD in Electrical Engineer-
ing at Polytechnique Montréal. He worked in companies, re-
search institutions and universities. In 2005 he was awarded
the Canada Research Chair Tier I in Software Change and
Evolution. He have participated in the program and organi-
zation committees of numerous IEEE-sponsored international
conferences. He served as program chair, industrial chair, tuto-
rial, and general chair of international conferences and work-
shops. He is a member of the editorial boards of four jour-
nals: the Journal of Software Testing Verification & Reliabil-
ity, the Journal of Empirical Software Engineering and the
Software Quality Journal and the Journal of Software Main-
tenance and Evolution: Research and Practice. Dr. Giuliano
Antoniol served as Deputy Chair of the Steering Committee
for the IEEE International Conference on Software Mainte-

nance. He contributed to the program committees of more than 30 IEEE and ACM confer-
ences and workshops, and he acts as referee for all major software engineering journals. He is
currently Full Professor at the Polytechnique Montreal, where he works in the area of soft-
ware evolution, software traceability, search based software engineering, software testing and
software maintenance.

	Introduction
	Linguistic Antipatterns (LAs)
	Experimental design
	Developers' Perception of LAs
	Threats to Validity
	Related Work
	Conclusion and Future Work
	Appendices
	Detection

