Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Measuring the Impact of Lexical and Structural
Inconsistencies on Developers’ Cognitive Load during
Bug Localization*

Sarah Fakhoury - Devjeet Roy - Yuzhan
Ma - Venera Arnaoudova - Olusola
Adesope

Received: November 15, 2018 / Accepted: date

Abstract A large portion of the cost of any software lies in the time spent by
developers in understanding a program’s source code before any changes can be
undertaken. Measuring program comprehension is not a trivial task. In fact, differ-
ent studies use self-reported and various psycho-physiological measures as proxies.

In this research, we propose a methodology using functional Near Infrared
Spectroscopy (fNIRS) and eye tracking devices as an objective measure of pro-
gram comprehension that allows to conduct studies in environments close to real
world settings at identifier level of granularity. We validate our methodology and
apply it to study the impact of lexical, structural, and readability issues on devel-
opers’ cognitive load during bug localization tasks. Our study involves 25 under-
graduate and graduate students and 21 metrics. Results show that the existence
of lexical inconsistencies in the source code significantly increases the cognitive
load experienced by participants not only on identifiers involved in the inconsis-

* This work is an extension of our previous paper Fakhoury et al. [2018].

Sarah Fakhoury

SEL Lab, School of EECS, Washington State University
355 NE Spokane St., Sloan 326

Pullman, WA, 99164-2752 U.S.A.

Tel.: +1 (509) 335-8665

Fax: +1 (509) 335-3818

E-mail: sarah.fakhoury@wsu.edu

Devjeet Roy
SEL Lab, School of EECS, Washington State University
E-mail: devjeet.roy@wsu.edu

Yuzhan Ma
Amazon
E-mail: yuzhanm@amazon.com

Venera Arnaoudova
SEL Lab, School of EECS, Washington State University
E-mail: venera.arnaoudova@wsu.edu

Olusola Adesope
College of Education, Washington State University
E-mail: olusola.adesope@wsu.edu

2 Sarah Fakhoury et al.

tencies but also throughout the entire code snippet. We did not find statistical
evidence that structural inconsistencies increase the average cognitive load that
participants experience, however, both types of inconsistencies result in lower per-
formance in terms of time and success rate. Finally, we observe that self-reported
task difficulty, cognitive load, and fixation duration do not correlate and appear
to be measuring different aspects of task difficulty.

Keywords Program Comprehension - Cognitive Load - fNIRS - Biometrics -
Linguistic Antipatterns - Readability

1 Introduction

One of the most cognitively intensive, yet fundamental activities in the software
development life cycle is the act of program comprehension. Before developers can
make any changes to a piece of source code, they spend a considerable amount of
time reading through existing source code, using a variety of different comprehen-
sion strategies. Therefore, program comprehension plays a key role in the pursuit
of improving the overall costs and processes involved for the creation of any soft-
ware system. Which is why over the past few decades program comprehension
has been studied extensively by researchers trying to understand more about how
developers comprehend source code, the different source code aspects that effect
comprehension, and ways to improve this process.

The resulting research has shown that an important contributor to software
comprehension has to do with the quality of the lexicon, i.e., the identifiers and
comments that are used by developers to embed domain concepts and to commu-
nicate with their teammates. Although recent work by Scanniello and Risi [2013]
suggests that identifier length has no significant effect on identifying and fixing
faults in the source code, many other studies show evidence of a correlation be-
tween the quality of identifiers (measured using various metrics) and the quality
of a software project [Abebe et al., 2012; Buse and Weimer, 2010; Marcus et al.,
2008; Poshyvanyk et al., 2006]. Additionally, the readability and the structural
complexity of the code can have a significant impact on program comprehension.

Before improving program comprehension, we first need reliable methods to
measure it. However, this is a non trivial task because program comprehension
involves a multitude of complex cognitive processes. The most commonly used
metrics of program comprehension are conventional research methods based on
self-reported verification. These conventional methods are mostly indirect mea-
sures of comprehension, where subjects report on their own comprehension levels
or summarize part of an artifact so that researchers can instead deduce the level
of comprehension. Some of these methods include think aloud protocols, surveys,
and comprehension summaries. For example, Binkley et al. [2009a] studied the
impact of identifier style on code readability. Lawrie et al. [2006] use source code
summaries and self reported confidence levels to assess comprehension levels of
participants reading source code snippets containing single letter, abbreviated,
and full length identifiers. However, there are several potential issues that can
result from using these indirect measures because they are prone to participant
biases [Hochstein et al., 2005]. For example, participants may report they under-
stood a piece of source code, but their perceived understanding does not necessarily
mean they correctly understood the source code.

Title Suppressed Due to Excessive Length 3

This is why in recent years researchers have begun exploring how to use physio-
logical data to supplement our perspective on comprehension with direct, empirical
measures that can provide a more objective understanding of the cognitive process
behind program comprehension. For example, Lee et al. [2017] use a combination
of EEG and eye tracking metrics to predict task difficulty and programmer exper-
tise. Fritz et al. [2014] combined EEG, eye tracking, and electro dermal activity
(EDA) to investigate task difficulty during code comprehension. Recent efforts to
investigate how the human brain processes program comprehension tasks involve
the use of functional magnetic resonance imaging (fMRI). For example, fIMRI is
used to study program comprehension in the brain [Siegmund et al., 2014], differ-
ent comprehension strategies [Siegmund et al., 2017] and areas of brain activation
between source code and natural language tasks [Floyd et al., 2017]. Most recently,
Peitek et al. [2018] explore the early stages of using both fMRI and eye tracking
together for program comprehension tasks. Despite the success of fMRI studies in
the domain, fMRI machines remain a costly and restrictive approach, with which
it is hard to reproduce the real life working conditions of software developers.

We aim to expand the knowledge on human cognition by introducing func-
tional near infrared spectroscopy (fNIRS) as a more practical tool to empirically
investigate the effects of source code on brain activity through the hemodynamic
response within physical structures of the brain. FNIRS is a brain imaging tech-
nique comparable to fMRI [Fishburn et al., 2014] as both rely on blood-oxygen-
level dependent (BOLD) response and show highly correlated results for cognitive
tasks. The low cost and minimally restrictive nature of fNIRS makes it particularly
well suited to the task of uncovering a deeper understanding of how developers
comprehend source code. Existing research involving the use of fNIRS by Nak-
agawa et al. [2014] investigates the hemodynamic response during mental code
execution tasks of varying difficulty. The only other fNIRS study in the domain by
Ikutani and Uwano, uses fNIRS to investigate the effects of variables and control
flow statements on blood oxygenation changes in the prefrontal cortex [Ikutansi
and Uwano, 2014].

However, the effect of lexicon and readability of source code on developers’
cognitive load during software comprehension tasks remains unexplored. The low
cost and minimally invasive nature of fNIRS makes it particularly well suited for
this task. FNIRS data can be related to specific aspects of source code in real
time through the use of modern eye tracking devices. This would allow researchers
to pinpoint problematic elements within the source code at a very fine level of
granularity.

In this research, we propose a methodology using functional Near Infrared
Spectroscopy (fNIRS) and eye tracking devices as an objective measure of pro-
gram comprehension that allows to conduct studies in environments close to real
world settings at identifier level of granularity. We validate our methodology and
apply it to study the impact of 21 distinct lexical, structural, and readability met-
rics on developers’ cognitive load during bug localization tasks. This work is an
extension of our previous work [Fakhoury et al., 2018]. We follow the same exper-
iment methodology in this paper, expanding our participant pool from 15 to 25,
and answering additional research questions, specifically RQ5-RQ8, as outlined in
our contributions.

4 Sarah Fakhoury et al.

The contributions of this work are as follows:

1. A methodology to accurately measure developers’ cognitive load at a low level
of granularity.

2. A study with 25 undergraduate and graduate students investigating the impact
of lexical and structural inconsistencies on cognitive load.

3. Confirming previous results showing that lexical inconsistencies significantly
increase developers’ cognitive load and that both lexical and structural in-
consistencies decrease developers’ performance during bug localization tasks
(RQ1-RQ4).

4. Evidence that cognitive load significantly increases over identifiers containing
linguistic antipatterns (RQ5).

5. A comparison of self-reported measures with cognitive load and eye tracking
data showing that the three types of measures capture different aspects of task
difficulty (RQ8).

6. A replication package [Fakhoury, 2018], which includes the source code snippets
used for our experiment, to allow reproducibility of our results.

Paper organization. The rest of the paper is organized as follows. Section 2
discusses the background, in particular metrics and technologies used throughout
the study. Section 3 defines our research questions and presents the experimental
set up and methodology used to answer those research questions. Section 4 presents
the results and analysis of our findings and Section 5 discusses the implications
of these results. Section 6 discusses the threats to validity of this work. Section 7
discusses related work and Section 8 concludes the study.

2 Background

In this section, we provide a background on Linguistic Antipatterns (Section 2.1),
structural and readability metrics (Section 2.2), Functional Near Infrared Spec-
troscopy (Sections 2.3), and Eye tracking (Section 2.4).

2.1 Linguistic Antipatterns (LAs)

Several studies have investigated identifier naming patterns [Blackwell, 2006] and
the effects of identifier naming on developer cognition [Liblit et al., 2006] [Binkley
et al., 2009b] [Takang et al., 1996]. There also exists literature aiming to provide
guidelines for proper identifier naming [Deissenboeck and Pizka, 2006]. Here, we
focus on a specific class of linguistic smells that can hinder program comprehen-
sion. Linguistic Antipatterns (LAs), are recurring poor practices in the naming,
documentation, and choice of identifiers in the implementation of program enti-
ties [Arnaoudova et al., 2013]. LAs are perceived negatively by developers as they
could impact program understanding [Arnaoudova et al., 2016]. In this section, we
briefly summarize a subset of the catalog of Linguistic Antipatterns used in our
study.

A.1 “Get” - more than an accessor: A getter that performs actions other than
returning the corresponding attribute without documenting it.

Title Suppressed Due to Excessive Length 5

A.3 “Set” method returns: A set method having a return type different than void
and not documenting the return type/values with an appropriate comment.

B.1 Not implemented condition: The method’” comments suggest a conditional be-
havior that is not implemented in the code. When the implementation is default
this should be documented.

B.6 FEaxpecting but not getting a collection: The method name suggests that a col-
lection should be returned, but a single object or nothing is returned.

B.7 Get method does not return corresponding attribute: A get method does not
return the attribute suggested by its name.

C.2 Method signature and comment are opposite: The documentation of a method
is in contradiction with its declaration.

D.1 Says one but contains many: An attribute name suggests a single instance,
while its type suggests that the attribute stores a collection of objects.

D.2 Name suggests Boolean but type does mot: The name of an attribute suggests
that its value is true or false, but its declaring type is not Boolean.

E.1 Says many but contains one: Attribute name suggests multiple objects, but its
type suggests a single one.

F.2 Attribute signature and comment are opposite: Attribute declaration is in con-
tradiction with its documentation.

2.2 Structural and Readability Metrics

There exists a depth of research about how various structural aspects of source code
can affect both the readability of the source code and impede the comprehension
of developers. Buse and Weimer Buse and Weimer [2010] conduct a large scale
study investigating code readability metrics and find that structural metrics such
as the number of branching and control statements, line length, the number of
assignments, and the number of spaces negatively affect readability. They also
show that metrics such as the number of blank lines, the number of comments,
and adherence to proper indentation practices positively impact readability.

Metrics such as McCabe’s Cyclomatic Complexity [McCabe, 1976], nesting
depth, the number of arguments, Halstead’s complexity measures [Halstead, 1977],
and overall number of lines of code have also been shown to impact code readabil-
ity [Posnett et al., 2011].

Table 1 lists method level metrics that have been shown to correlate with read-
ability and comprehensibility [Buse and Weimer, 2010; Halstead, 1977; McCabe,
1976; Posnett et al., 2011; Scalabrino et al., 2016]. A subset of these metrics, which
are bold in the table, are used in our study.

2.3 Functional Near Infrared Spectroscopy (f{NIRS)

Functional Near Infrared Spectroscopy is an optical brain imaging technique that
detects changes in oxygenated and deoxygenated hemoglobin in the brain by using
optical fibers to emit near-infrared light and measure blood oxygenation levels.
The device we use is the fNIR100, a stand-alone functional brain imaging system,
in the shape of a headband, produced by BIOPAC [2018a]. It measures blood
oxygenation levels in the prefrontal cortex, which is sufficient as studies have shown

6 Sarah Fakhoury et al.

Table 1: Method level metrics. The ‘+’ symbol indicates that a feature is positively
correlated with high readability and comprehensibility of the code, and the ‘-
’ symbol indicates the opposite. The number of symbols indicate how strongly

correlated each feature is. Three is high, two is medium, and one is low.

Feature Corr. Feature Corr.
Cyclomatic Complexity — — — Halstead vocabulary -
Number of Arguments — — — Halstead length —
Number of operands — — — Number of casts —
Class References — — — Number of loops —
Local Method References — — — Number of expressions -
Lines of Code — — — Number of statements —
Halstead effort - — Variable Declarations -
Halstead bugs - — Number of Comments + +
Max depth of nesting - — Number of Comment Lines + +
External Method References — — Number of Spaces + +
Halstead volume - Number of operators —+

Halstead difficulty —

that mentally demanding tasks require resources in the prefrontal cortex [Causse
et al., 2017]. Overall, the device is light weight, portable, and easy to set up.

Light sources are arranged on the headband along with light detectors. The
light sources send two wavelengths of near-infrared light into the forehead, where
it continues through the skin and bone 1 to 3cm deep into the prefrontal cor-
tex. These light sources and detectors form 16 distinct optnodes which allow the
fNIR100 to collect data from 16 distinct points across the prefrontal cortex. Biolog-
ical tissues in the prefrontal cortex are relatively transparent to these wavelengths,
but the oxygenated and deoxygenated hemoglobin are the main absorbers of this
light. After the light scatters in the brain, some reaches the light detector on the
surface. By determining the amount of light sensed by the detector, the amount of
oxygenated and deoxygenated hemoglobin in the area can be calculated using the
modified Beer-Lambert Law [Delpy et al., 1988]. Because these hemodynamic and
metabolic changes are associated with neural activity in the brain, fNIRS measure-
ments can be used to detect changes in a person’s cognitive state while performing
tasks [Treacy Solovey et al., 2015]. For example, fNIRS has been successfully used
to detect task difficulty in real-time on path planning for Unmanned Air Vehicle
tasks [Afergan et al., 2014] and tasks designed to invoke working memory [Fishburn
et al., 2014]. The hemodynamic response has been show to have a delay of around
six seconds, from the time of exposure to a specific stimulus. [Kruggel and von
Cramon, 1999] Therefore, when analyzing f{NIRs data, researchers must account
for this delay.

From the measured oxygenated hemoglobin (HbO) and deoxygenated hemoglobin
(HbR) concentration levels we are able to calculate HbT, which is the total hemoglobin
HbO + HbR, as well as Oxy, which is the difference between HbO and HbR and
reflects the total oxygenation concentration changes. In this study, we use Oxy,
which has been shown in a wide variety of studies [Fishburn et al., 2014; Girouard
et al., 2009; Herff et al., 2014] to be a function of task difficulty, as a measure of
cognitive load during the various code reading tasks.

Due to the fact that fNIRS devices are highly sensitive to motion artifacts and
light, users should remain relatively still and not touch the device during recording.
Before any analysis can take place, INIRS data must be refined and filtered to

Title Suppressed Due to Excessive Length 7

Light Detector

Light Source (LED) |

QNN TIN5
(=)

&

Optode Zones &
10 12 14 16

Fig. 1: The fNIRS sensor has 4 light sources and 10 detectors. The 16 optnode
locations are mapped on the device.

remove any motion artifacts and noise, as well as to exclude data collected by
individual optnodes that may not have been fit properly against the forehead.
These optnodes are usually optnodes 1 and 15, which are located on the outer
edge of the device, near the user’s hairline. These optnodes are easily identifiable
as they show patterns of either sharp peaks and dips or remain flat. optnode
configuration can be seen in Figure 1. The exclusion of an optnode does not effect
the data collected by other optnodes. To remove noise, all data is filtered using
a linear phase, low pass filter that attenuates high frequency components of the
signal. We use the filtering provided by Biopac’s fNIRSoft [BIOPAC, 2018b]. If
a user has any unexpected movement, such as sneezing or coughing, we place a
marker in the data and such peaks are excluded during the data analysis process.

Fig. 2: The actual experimental setup. The image shows one of our authors wearing
the fNIRS on her forehead, with the eyetracker placed at the base of the computer
monitor.

8 Sarah Fakhoury et al.

2.4 Eye tracking

There are an ample amount of studies within the eye tracking research domain that
give insight into visual attention patterns and behavior during reading tasks [Sharafi
et al., 2015b] [Sharafi et al., 2015a]. For example, fixations, which are defined as
a relatively steady state between eye movements, and fixation duration, which
is the amount of time spent in one location. Research suggests that processing
of visual information only occurs during a fixation and that fixation duration is
positively correlated with cognitive effort [Rayner, 1998]. Therefore, we will use
fixation duration to determine areas participants spent a substantial amount of
time reading.

We use the EyeTribe eye tracker [EyeTribe, 2018] throughout this experiment.
The EyeTribe offers a sampling rate of 60 Hz and an accuracy of around 0.5-1
degrees of visual angle which translates to an average error of 0.5 to 1 ¢cm on a
screen (19-38 pixels). To mitigate the effects of this error we set the font size of the
source code to 18 pt which translates to an average error of one to three characters.
The 60 Hz sampling rate of the EyeTribe is not suitable for eye tracking studies
that study saccades, however it is appropriate for our purpose of investigating
fixations within the source code [Ooms et al., 2015]. We calibrate the eye tracker
using 16 gaze points (as opposed to 9 or 12 points) to cover the screen with
higher accuracy. To ensure the integrity of the eye tracking data collected, only
calibration quality that is rated as 4 out of 5 stars or higher is accepted for use in
the experiment. Calibration quality at these levels indicate an error of <0.7 and
0.5 degrees (less than 19-30 pixels) respectively.

Participants use the Eclipse IDE [Eclipse, 2018] as their environment during
the experimental tasks. We will be using iTrace [Shaffer et al., 2015], a plugin
for Eclipse that interfaces with the eye tracker to determine what source code
elements the participants are looking at. We extend the iTrace plugin to identify
source code elements at a lower level of granularity, which is terms that compose
identifiers. iTrace has a fixation filter to filter out noisy data that may arise due to
errors from the eye tracker. This filter estimates fixations on source code elements
using the median and joins fixations that are spatially closer together within a
threshold radius of 35 pixels (3 characters).

Figure 2 shows one of the authors with the complete experimental setup, in-
cluding the eyetracker, {NIRS device and computer setup that was used by the
participants during the study.

3 Methodology

The goal of this study is two-fold: First, to determine if {NIRS and eye tracking de-
vices can be used to successfully capture high cognitive load within text or source
code, at a word level of granularity. Second, to determine if structural or lexical
inconsistencies within the source code increase developers’ cognitive load during
software comprehension tasks. The perspective is that of researchers interested in
collecting and evaluating empirical evidence about the effect of poor lexicon and
readability of source code on developers’ cognitive load during software compre-
hension.

Title Suppressed Due to Excessive Length

3.1 Research Questions

More precisely, the study aims at answering the following research questions:

. RQu: Can developers’ cognitive load be accurately associated with identifiers’
terms using fNIRS and eye tracking devices?

Why?: fNIRS and eye tracking devices have not previously been used to assess
cognitive load at an identifier level of granularity. Therefore, we must first
determine if our methodology is capable of automatically determining areas of
high cognitive load correctly at low level of granularity.

How?: We ask participants to perform a comprehension tasks and then explore
the similarity between fixations on text highlighted by participants as difficult
to comprehend and fixations that are automatically classified as having high
cognitive load.

. RQ2: Do inconsistencies in the source code lexicon cause a measurable increase
in developers’ cognitive load during program comprehension?

Why?: Linguistic antipatterns are perceived negatively by developers as they
could impact program understanding [Arnaoudova et al., 2016]. We introduce
linguistic antipatterns to source code snippets to determine if they also cause
an increase the cognitive load of developers.

How?: We ask participants to perform bug localization tasks on a snippet
that does not contain lexical inconsistencies and on one that does. We then
explore the average cognitive load experienced on the two snippets as well as
the percentage of fixations that contain high cognitive load in each snippet.

. RQ3: Do structural inconsistencies related to the readability of the source code
cause a measurable increase in developers’ cognitive load during program com-
prehension?

Why?: Various structural aspects of the source code can affect its readability.
We want determine if these factors also affect the cognitive load of developers.
How?: We ask participants to perform bug localization tasks on a snippet that
contains structural inconsistencies and on one that does not. We then explore
the average cognitive load experienced on the two snippets.

. RQ4: Do both structural and lexical inconsistencies combined cause a measur-
able increase in developers’ cognitive load during program comprehension?
Why?: We explore a combination of lexical and structural inconsistencies to
determine if, when both factors are combined, they cause an increase in the
cognitive load of developers.

How?: We ask participants to perform bug localization tasks on a snippet that
contains both structural and lexical inconsistencies and on one that does not.
We then explore the average cognitive load experienced on the two snippets.

. RQ5: Does the presence of inconsistencies in the source code lexicon affect the
cognitive load of developers over an entire source code snippet or only over the
identifiers that are involved in the inconsistencies?

Why?: When answering research questions 2-4 we use the average cognitive
load experienced over an entire snippet to determine if the treatment ef-
fected participants. However, participants could initially struggle to understand
source code due to the various treatments, but eventually get past the incon-
sistencies and figure out an alternative way to solve the problem. Therefore,
we want to use temporal eyetracking and fNIRS data to observe cognitive load

10

Sarah Fakhoury et al.

fluctuations more precisely over the course of the task. This is the primary mo-
tivation behind RQs 5 — 7. For RQ5 in particular, if we observe overall increased
cognitive load for source code snippets that contain linguistic antipatterns, we
want to determine what areas of the source code the increase cognitive load
comes from.

How?: We compare the normalized Oxy distributions over identifiers from con-
trol snippets and those from LA treatment snippets. Identifiers from LA treat-
ments that contain LAs are separated from those that do not contain LAs.
This allows us to determine if cognitive load is spread between these two dis-
tributions, or if it stems only from identifiers that contain LAs. We also rank
identifiers in control snippets and LA snippets by the average normalized Oxy
to determine which identifiers have high cognitive load in both control and LA
treatments.

. RQe: Is participant performance, in terms of success rate and task duration,

affected by the presence of lexical and structural inconsistencies?

Why?: Difficult tasks are expected to cause an increase in cognitive load of
developers but also they could have a lower success rate and higher task du-
ration. We want to determine how structural and lexical inconsistencies affect
these performance metrics.

How?: We calculate the task duration of each participant completed task and
assess the answers from the post analysis survey to determine if a bug local-
ization task was successfully completed or not.

RQ7: Does fization duration significantly increase over identifiers containing
lexical inconsistencies?

Why?: Fixation duration has been shown to be positively correlated with cogni-
tive effort [Rayner, 1998] and has been used in software engineering to measure
the visual effort experienced by participants [Binkley et al., 2013; Sharafi et al.,
2012; Sharif et al., 2012]. In this research question we want to determine if fix-
ation duration increases over identifiers that contain linguistic antipatterns.
How?: We calculate the fixation duration over unique identifiers in control and
LA versions of each treatment snippet. We then test for significant between
the duration distributions for each method.

RQs: Are self-reported measures consistent with cognitive load and fization du-
ration data?

Why?: Different approaches can be used to measure task difficulty. Self-reported
measures are the easiest to collect during experiments but they might not be
always accurate [Hochstein et al., 2005]. Fixation duration has been shown to
be positively correlated with cognitive effort [Rayner, 1998]. In this work, we
measure Oxy as it has been previously shown that it is a function of task dif-
ficulty [Fishburn et al., 2014; Girouard et al., 2009; Herff et al., 2014]. This
research question investigates whether these three ways of measuring task dif-
ficulty are consistent.

How?: We use answers from the post analysis survey to determine the difficulty
rating of each task. We also calculate the average Oxy and fixation duration
per participant task, and perform a pairwise test for correlation between the
three metrics.

Title Suppressed Due to Excessive Length 11

3.2 Source Code Snippets

In an effort to replicate real life development environment as close as possible
we aim at identifying four code snippets from open-source projects to use in our
experiment. Snippets had to meet the following criteria:

— Participants must be able to understand the snippet on its own, without too
many external references.

— The snippets must be around 30-40 lines of code including comments so that
all chosen snippets take similar time to comprehend without interference due
to length.

— The snippets should be able to be altered in such a way that a reasonably
difficult to detect semantic defect can be inserted.

— The snippets should be able to be altered to contain Linguistic Antipatterns.

The snippets were chosen from JFreeChart, JEdit, and Apache Maven projects.
Two snippets were chosen Apache Maven—methods replace and index0fAny (from
StringUtils.java), one from JEdit— method LoadRulesets (from SelectedRules.java),
and one from JFree-Chart—method calculatePieDatasetTotal (from DatasetUtili-
ties.java). After conducting a pilot study to assess the suitability of each snippet
we discarded method LoadRuleSets from JEdit as it required a good understand-
ing of surrounding source code and domain knowledge. Thus, the experiment is
performed with the remaining three code snippets.

8.2.1 Altering Snippets

In this section we first describe how original snippets are altered to contain bugs
to become control snippets. Then, we describe how control snippets are altered
to contain either linguistic antipatterns, structural inconsistencies, or both. All
snippets and treatments can be found online in our replication package [Fakhoury,
2018].

Bugs

Source code snippets are altered to contain a semantic fault. Participants are asked
to locate the fault as a way to trigger program comprehension. Semantic defects
are inserted in the code snippets as opposed to syntactic defects, which can be
found without deep understanding of source code snippets. All bugs inserted are
one line defects, inserted at around the same location in the code snippets to
control for any unwanted location-based effect (i.e., finding a defect earlier if it
located higher up in the code).

Linguistic Antipatterns

Section 2.1 describes a subset of the catalog of LAs defined by Arnaoudova et al.
[2013]. We alter the snippets to contain the listed LAs. Due to the limited number
of code snippets it is impossible to include all seventeen LAs, which is why a subset
is selected. We aimed at including a variety of antipatterns that arise in method
signatures, documentation, and attribute names.

12 Sarah Fakhoury et al.

For example, listings 1 and 2 show the control and LA treatments respectively
of the same snippet. In this example, we modify the method signature to intro-
duce LA A.3 (“Set” method returns). We also add documentation to describe an
if statement that is not implemented in the source code to introduce LA B.1 (Not
implemented condition). We intoduce LA C.2 (Method signature and comment are
opposite) by indicating in the comment that the ’last index’ is found instead of
the ’first’ index. LA D.1 (Says one but contains many) relates to renaming the
array 'searchStrings’ to 'potentialString’ which both suggests a singular instance
instead of plural and reflects a more ambiguous meaning than the original term.

/**% <p>Find the first index of any of a set of potential substrings.</p>
<p/>
<p><code>null</code> String will return <code>-1</code>.</p>

@param string the String to check

@param searchStrings the Strings to search for

Q@return the first index of any of the searchStrings in string

@throws NullPointerException if any of searchStrings[i] is
<code>null</code> */

public static int firstIndexOfAny(String string, String [] searchStrings)

{

* Ok K X X X X

if ((string == null) || (searchStrings == null))

{
return -1;

}

// String’s can’t have a MAX_VALUEth index. So begin by initilizing
resultIndex to max int value.

int resultIndex = Integer.MAX_VALUE;

int temp;

for (String searchString : searchStrings)

{
}

Listing 1: Part of source code snippet with control treatment.

/*%
* <p>Find the last index of any of a set of potential substrings.</p>
* <p/>
* <p><code>null</code> String will return <code>-1</code>.</p>
* if the case of the substring matches that of the case within the string
* return this value first.
*
* Q@param string the String to check
* Q@param potentialString the Strings to search for
* Qreturn the first index of any of the potentialString in string
* @throws NullPointerException if any of potentialString[i] is

<code>null</code> */
public static int setFirstIndexOfAny(String string, String [] potentialString)

Listing 2: Comment and method signature for snippet with LA treatment.

Title Suppressed Due to Excessive Length 13

Structural and Readability Metrics

We alter the code snippets to change the values of a subset of the metrics de-
scribed in Section 2.2 that have been shown to correlate with the readability and
comprehensibility of code snippets. Snippets are formatted in a way that is against
conventional Java formatting standards in order to reduce readability. This implies
opening and closing brackets are not on their own lines and are not indented prop-
erly. Metrics that are described as having negative correlation to readability, such
as number of loops, are increased in the snippet. Metrics that are shown to have
positive correlation to readability, such as number of comments, are decreased in
the snippet.

Recall the example presented in the previous section. Code listing 3 contains a
part of the snippet with the structural treatment that corresponds to the control
snippet shown in code listing 1. Examples of changes here include modifying iden-
tifier terms so that they do not follow camelCase typesetting, reducing the number
of comment lines and spaces, increasing the number of parameters, variable dec-
larations, expressions, if statements, and lines of code. We also format the source
code against typical java conventions, for example, indentation and brackets are
misaligned.

/*%

* <p>Find the first index of any of a set of potential substrings.</p>

* <p/>

* <p><code>null</code> String will return <code>-1</code>.</p>

*/

public static int firstindexofany(String string, String [] searchstrings,
int numb0OfStrings)

{
int notfound =-1;
if (searchstrings == null){ return notfound;
}

if (string ==null) return notfound;

int resultindex

= Integer.MAX_VALUE;

int temp; int i;

for (i=0; i< numbOfStrings; i++)

{

Listing 3: Part of source code snippet with structural treatment.

3.3 Participants

The participants were recruited from a pool of undergraduate and graduate Com-
puter Science students at the authors’ institution. A total of 70 participants indi-
cated their interest by filling out an eligibility survey. Participants were asked to
complete an online eligibility survey to ensure that they have some programming
experience, thus we require that they must have taken at least one introductory
course in C