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Abstract—There are several widely accepted metrics to mea-
sure code quality that are currently being used in both research
and practice to detect code smells and to find opportunities for
code improvement. Although these metrics have been proposed as
a proxy of code quality, recent research suggests that more often
than not, state-of-the-art code quality metrics do not successfully
capture quality improvements in the source code as perceived
by developers. More specifically, results show that there may be
inconsistencies between, on the one hand, the results from metrics
for cohesion, coupling, complexity, and readability, and, on the
other hand, the interpretation of these metrics in practice. As
code improvement tools rely on these metrics, there is a clear
need to identify and resolve the aforementioned inconsistencies.
This will allow for the creation of tools that are more aligned
with developers’ perception of quality, and can more effectively
help source code improvement efforts.
In this study, we investigate 548 instances of source code
readability improvements, as explicitly stated by internal de-
velopers in practice, from 63 engineered software projects. We
show that current readability models fail to capture readability
improvements. We also show that tools to calculate additional
metrics, to detect refactorings, and to detect style problems are
able to capture characteristics that are specific to readability
changes and thus should be considered by future readability
models.

I. INTRODUCTION

The code quality of every single software project is assessed
at some point within its development life cycle. Researchers
have developed several metrics to measure code quality which
are widely accepted in practice. However, recent research by
Pantiuchina et al. [22] has shown that more often than not,
state-of-the-art code quality metrics are unable to capture
quality improvements in the source code, as perceived by
developers in practice. In fact, metrics are unable to capture
the majority of instances where improvements in the source
code’s cohesion, complexity, coupling, and readability are
made. However, when evaluating code quality metric models
in research, numbers as high as 85% [28] for accuracy are
reported. Therefore, there seems to be a discrepancy between
on the one hand, the results from models in research, and on
the other hand, the interpretation of these metrics in practice.
In order to build tools that can help developers identify a range
of opportunities for code quality improvement in practice,
we need models that can measure and identify code quality

metrics in a way that aligns with developer’s perception and
can be used in practice.

In this paper we investigate three state of the art readability
models, which have been shown to successfully capture source
code readability in theory [28], and discuss the results when
those models are applied on source code, i.e., in practice. This
is in contrast to previous work, which evaluates readability
based on surveying techniques. Instead, we aim to understand
whether these readability models are able to capture readability
improvements as explicitly tagged by developers in their day
to day commits. We confirm recent findings by Pantiuchina
et al. [22] that current readability models are unable to
capture readability improvements during software maintenance
activities in practice. We expand existing work by providing
the following contributions:

1) We identify metrics captured by current state-of-the-art
readability models that do not significantly change during
readability improvements in practice.

2) We show that certain structural metrics, refactorings, style
problems, and words contained in commit messages can
be good indicators of changes that pertain to readability
improvement.

3) We provide a replication package that includes an ora-
cle of manually curated commits related to readability
improvements [2].

We analyze 548 readability commits from 63 engineered
Java projects. We identify a commit as a readability commit
if its message explicitly states that the change made by
the commit aims to improve readability. To ensure that our
dataset contains only files affected by readability commits, we
manually untangle each commit to include only files where the
stated improvement is applied. Results show that readability
commits tend to fix problems introduced by non-readability
commits, such as imports, spaces, and braces. We also observe
that certain refactorings such as extract method, inline method,
and rename class are very frequent in readability commits
and almost non-existant in other commits. These changes
are confirmed by the commit messages that developers write
to summarize the changes of the commits. Thus, readability
models should include such information to more accurately
detect incremental readability changes.

The rest of this paper is organized as follows: Section
II outlines the research questions of the study, defines the



readability models and metrics considered, introduces the
static analysis tools used, and explains the data collection
and processing techniques. Section III contains the results for
each of the research questions defined. Section IV outlines the
threats to the validity of the study, Section V discusses related
work, and Section VI contains concluding remarks.

II. METHODOLOGY

A. Research Questions

The goal of this study is to investigate the degree to
which different models and measures capture readability
improvements at commit level. The quality focus is the
performance of current state-of-the-art readability models,
as well as tools for metrics and refactoring. The perspective
of the study is that of researchers and developers, who
are interested in measuring readability in their day to day
software maintenance tasks. The evaluation is carried out on
548 commits from 63 engineered Java projects collected from
GitHub1.

This study addresses the following research questions:
1) RQ1: Are state-of-the-art readability models able to

capture readability improvements in practice?
To answer this research question we consider three state
of the art readability models, Scalabrino’s model [29],
Dorn’s model [8], and the Combined model, which com-
bines the first two models as well as Buse & Weimer’s
model [6] and Posnett’s model [24]. We run each of
the models on a set of files before and after readability
improvements were made, and investigate whether they
are able to capture the improvement.

2) RQ2: Which source code metrics capture improvement
in the readability of source code, as perceived by
developers?
To answer this research question we run SourceMeter [16]
on files before and after readability improvements were
made and look for significant differences between the
metric values in the two populations.

3) RQ3: What types of changes do developers perform
during readability improvements?
To answer this research question we run ChangeDis-
tiller [9], CheckStyle [1], and RefactoringMiner [30] to
understand the types of changes and refactorings that are
made on source code during readability improvements.

4) RQ4: What types of changes do developers describe in
commit comments related to readability improvements?
To answer this research question, we analyze the commits
comments from our dataset to understand i) what are the
most frequently used words? ii) what types of actions are
described, and on what aspects of source code?

B. Readability

1) Identifying Readability and Non-Readability Commits:
To answer the research questions defined in Section II-A, we

1https://github.com

collect commits from engineered projects where developers
specifically state a readability improvement was made to the
source code. We use Reaper [21], a tool that calculates a score
for GitHub repositories to determine whether they are engi-
neered projects or not. Next, we identify candidate commits to
include in our oracle by performing a simple keyword match.
The keywords we use are related to readability: ‘readable’,
‘readability’, ‘easier to read’, ‘comprehension’, ‘comprehensi-
ble’, ‘understand’, ‘understanding’, and ‘clean up’. Next, two
authors of this paper manually excluded commits that do not
explicitly reflect readability improvements of the source code.
For example, commits that improve readability of UI elements
of applications such as “Added user-readable version of the
todo.txt”.
Commits often times target several different changes at once.
Therefore, to ensure that we only include files that contain
readability changes we manually untangle commits by looking
at the commit messages and source code of all commits that
alter more than one file. This process resulted in 548 read-
ability commits and 2,323 datapoints from 63 Java projects.
A datapoint is a pair of before-after versions of a file. In this
paper we often refer to a datapoint simply as file but note
that this is not the unique number of files affected by the
commits. When answering RQ2, RQ3, and RQ4, we compare
readability commits to non-readability commits. To identify
non-readability commits, we randomly sample 1,231 commits
(which corresponds to roughly the same number of datapoints
as the one involved in the readability commits) from the 63
engineered projects after removing the readability commits
that we identified previously.

2) Readability Models: We consider three state of the art
readability models which assess different aspects of the source
code as our reference point for the metrics that have been
adopted in research for improved readability. The first model
we used is based on the original model proposed by Scalabrino
et al. [28]; it is dependent on metrics that measure the quality
of the source code lexicon as a proxy of readability. The
features considered by the model are: comments and identifier
consistency, identifier terms in dictionary, narrow meaning
identifiers, comments readability, number of meanings, textual
coherence, and number of concepts. The model was evaluated
on a dataset composed by 200 Java snippets. We use the
implementation provided by the authors [28].

The second model we consider is proposed by Dorn et
al. as a generalizable model for source code readability [8].
This model relies on various features like visual, spatial,
alignment, and linguistic aspects of the source code. The
model was evaluated by conducting a survey with around
5,000 participants rating the readability of 360 code snippets
written in 3 different programming languages. We use the
implementation provided by Scalabrino et al. in their paper
comparing state of the art readability models [28].

The last model we consider is implemented by Scalabrino et
al. [28] as a combination of multiple state of the art readability
models, which considers both structural and linguistic aspects
of the source code. This model is referred to as the Combined



model, which combines the first two models as well as Buse
& Weimer’s model [6] and Posnett’s model [24]. This model
is shown to have the highest accuracy scores when evaluated
against all the individual models on the same dataset. The
model combines the model proposed by Dorn et al. [8], Buse
and Weimer [6], Posnett et al. [24], and Scalabrino et al. [28].

We run all three models on our dataset of files before and
after readability commits.

C. Metrics Collection

1) SourceMeter: SourceMeter [16] performs deep static
analysis on source code to compute code quality metrics.
These metrics are grouped into 6 categories: cohesion, com-
plexity, coupling, documentation, inheritance, and size. Each
of these categories includes several metrics. For example,
complexity metrics include Halstead Effort (HE), McCabe‘s
Cyclomatic Complexity (McCC) and Weighted Methods per
Class (WMC). We use SourceMeter to answer RQ2.

2) CheckStyle: Checkstyle [1] is a static analysis tool which
checks source code adherence to configurable rules. We use
the standalone version of CheckStyle, along with two of
the configuration files provided by checkstyle, sunchecks.xml
and googlechecks.xml, modified to add a warning for magic
numbers. For each file in a readability commit, we run the tool
on the before and after commit snapshots of the file. We then
extract the number of files affected by each warning between
the two sets of before and after files to answer RQ3.

3) ChangeDistiller: ChangeDistiller was created by Fluri
et al. [9] as a tool to extract and categorize statement level
changes in Java source code. ChangeDistiller uses the abstract
syntax tree (AST) of the source code to extract fine grained
change extraction using the change distiller algorithm [10].
Statement level source code changes are classified according
to a taxonomy of 41 change types. We run ChangeDistiller on
files before and after readability improvements are made and
use the results to answer RQ3.

4) RefactoringMiner: RefactoringMiner detects refactor-
ings across the history of Java projects, using the RMiner
technique as proposed by Tsantalis et al. [30]. It supports
21 refactoring types, such as Extract Method, Move Method,
Replace Variable with Method, and Parameterize Variable. The
authors show that RefactoringMiner has 98% precision and
87% recall. To answer RQ3 we run RefactoringMiner on the
files before and after readability improvements were made by
developers to identify the types of changes that are being made
in practice to improve readability.

D. Analysis Methods

1) Preprocessing: Commit comments often contain the
name and email address of the committer as well as URLs.
We remove those from the messages using spaCy [14] Name
Entity Recognition and regular expression matchers. Next, we
used a tokenizer to parse the commit messages into a list
of words and remove stop words using the list provided by
NLTK [5]. Due to the fact that commits in our oracle are
identified using keywords, we added these keywords to the

list of stop-words to be removed. Next, we applied Porter
Stemmer [23] to identify the stem of each word. We use
the preprocessed commits when investigating the top words
in commit messages for RQ4.

2) Part-Of-Speech (POS) Tagging: To understand the ac-
tions that developers document in commit messages we ana-
lyze verb-object phrase pairs. To this end, we must tag commit
comments with their part of speech. We used the NLTK POS
tagger to parse and tag each word in the commit comments.
We use POS tagging to answer RQ4.

3) Grammatical Dependencies: Grammatical dependencies
are direct grammatical relations between terms in a sentence.
To analyze which aspects of source code developers are
working on while improving readability, we look into the
most common objects in commit comments. We use the spaCy
dependency parser [14], which generates dependency trees for
each sentence in a commit comment. Each dependency tree
provides the following features: dependency labels and entity
head dependency. To extract object-phrases, rather than singu-
lar words, we only use the top-most node in the dependency
tree. We use grammatical dependencies to answer RQ4.

4) Wilcoxon Signed Rank Test: In RQ2, we aim to find
metrics which capture improvements in readability of source
code as perceived by developers. We group our source code
samples into pairs, each pair is comprised of a snapshot of
the source file before a commit, and a snapshot of the file
after the same commit. We then perform a Wilcoxon signed-
rank test, a non-parametric statistical test used to compare two
related samples, to assess whether the population mean ranks
differ. We choose Wilcoxon because our data was shown to not
follow a normal distribution when tested using the Shapiro-
Wilk test. In addition, the two groups of commits (before
and after snapshots of the same file) are dependent on one
another. Our null hypothesis is that there is no difference
between our selected source code metrics before and after
the readability commits. Our alternative hypothesis is that
our selected metrics have significantly different values after
readability commits. A significant p-value (<= 0.05) indicates
that the metric values for the two populations are signifi-
cantly different. We also report the percentage of datapoints
where values of the metrics increases, decreases, or remain
unchanged.

5) Cliff’s Delta (d) Effect Size: Cliffs delta (d) effect
size [11] is a non-parametric statistic estimating whether the
probability that a randomly chosen value from a group is
higher than a randomly chosen value from another group,
minus the reverse probability. Values range between 1 and
1. When d = 1 there is no overlap between the two groups
and all values from group 1 are greater than the values from
group 2. When d = 1 there is again no overlap but all values
from group 1 are lower than the values from group 2. When
d = 0 there is a complete overlap between the two groups and
thus there is no effect size. Between 0 and 1 the magnitude
of the effect size is interpreted as follows: 0 ≤ |d| < 0.147:
negligible, 0.147 ≤ |d| < 0.33: small, 0.33 ≤ |d| < 0.474:
medium, 0.474 ≤ |d| ≤ 1: large. We use Cliff’s Delta to



answer RQ2.

III. RESULTS

In this section, we report the results of our study, with
the aim of answering the research questions formulated in
Section II.

A. RQ1: Are state-of-the-art readability models able to
capture readability improvements in practice?

Fig. 1. Readability scores generated by Dorn’s, Scalabrino’s, and the
Combined models for files before and after readability improvements.

Figure 1 contains the readability scores obtained by each
of the three readability models. For Dorn’s model, the mean
readability score for files before and after changes is 0.793
and 0.798, respectively. This is a mean increase of only 0.005
between the two populations. The model indicates that there
was a readability improvement in only 40.7% of the files.
Considering Scalabrino’s model, the mean readability score
generated by this model for files before changes is 0.664,
and 0.669 for files after changes. The mean readability scores
generated by the model increases also by 0.005. The model
indicates that there was a readability improvement in only
40.1% of the files. The combined model calculates a mean
readability score for files before changes as 0.754 and 0.760
after changes are made by developers. This is a 0.006 point
increase. The model indicates that there was a readability
improvement in only 35.7% of the files.

Overall, the readability models seem to agree on whether
a readability improvement exists for the majority of the files
in our dataset. Scalabrino’s and Dorn’s models indicate an
increase in readability for 667 of the same files, which is a 76%
intersection. Similarly, for Scalabrino’s and the Combined
models, the models agree on 559 files which is a 64%
intersection. For Dorn’s and the Combined models we see 606
files and a 78% intersection.

We observe that all three readability models are unable to
capture changes in the readability of source code for the major-
ity of the changed files. This is similar to the results obtained
by Pantiuchina et al. [22]; they find that the Scalabrino’s
model only reports 38%, compared to our 40.1%, of modified
classes as improving readability. Similarly to what we can see

in Figure 1, the difference in the distribution of scores for the
Buse & Weimer’s model for before and after files is negligible.
One reason for this is that the source code snippets before any
changes are made may not be of particularly poor readability
and that the improvements made by the developers have a
minimal affect on overall readability of a snippet. Note that
all three readability models were evaluated by the original
authors on datasets composed of source code snippets that
have been flagged by external developers as being readable
or not readable. Thus, the models may be better able to
distinguish between extreme differences in the readability of
code snippets.

For example, one change made by a developer to improve
readability consisted of renaming a single identifier2. In this
case, the score for all readability models stayed the same,
before and after the change. However, there are also several
cases where readability decreases after a change is made. For
example, one commit consisted of formatting and regrouping
the source code, but no functional change3. Scalabrino’s model
initially rated the code as 0.56 but then decreased to 0.46 after
the change was made. Similarly, Dorn’s model decreases by
0.04 points and the combined model by 0.01 points. Another
change consisted of replacing conditions inside if statements
with boolean variables4. The variable names are descriptive of
the conditional statement, which makes it easier to understand
the code. The models all register a very slight decrease in
readability.

However, if we hope to create tools that help developers to
improve the readability of the source code in practice, we must
build models that are able to detect incremental improvement.
Such models will be more useful to identify improvement
opportunities when projects are maintained in day to day tasks.
To this end we need to 1) identify which metrics change during
readability improvements in practice and 2) identify the types
of changes that developers make to improve the readability of
their source code.

RQ1 Summary: Our results show that readability models
are unable to capture readability improvements during
software maintenance for the majority of the changed files,
which aligns with recent findings by Pantiuchina et al. [22].
Thus, there is a need for models that are able to capture
incremental readability improvements which will be more
applicable for measuring readability changes in day to day
software maintenance tasks.

B. RQ2: Which source code metrics capture improvement in
the readability of source code, as perceived by developers?

Using SourceMeter we explore changes in values between
files before and after readability improvements for various
metrics. Table I shows a list of metrics considered by the
three readability models we use for this paper. We also indicate
here whether these metrics are also supported using the static

2https://tinyurl.com/y3mrduqo
3https://tinyurl.com/yxbg9dxx
4https://tinyurl.com/yy5hcbel



TABLE I
METRICS CONSIDERED BY EACH OF THE INDIVIDUAL READABILITY MODELS USED. (CS) INDICATES THIS METRIC IS SUPPORTED BY CHECKSTYLE,

(RM) REFACTORINGMINER, (CD) CHANGEDISTILLER, AND (SM) SOURCEMETER.

Buse & Weimer Dorn (Features) Scalabrino Posnett

Line Length (cs) # Spaces Line Length (cs) Spaces Comment Identifier Consistency Halstead’s vocabulary (sm)
# Identifiers # Assignments Literals Assignments Identifier Terms in Dictionary Token level entropy
Indentation # Loops Indentation (cs) Loops Narrow Meaning Identifiers # Lines (sm)
# Keywords # Arithmetic Operators (sm) Keywords Operators (sm) Flesch-Kinacaid
Identifier length # Comparisons Identifiers (rm, cd) Comparison Number of Meanings
# Numbers # Any char Numbers Expressions Textual Coherence
# Parentheses (sm) # Any identifier Parentheses Periods Number of Concepts
# Comments (sm) # Branches Comments (sm, rm)
# Commas #Blank Lines (cs) Commas

analysis tools we use. Table II contains results, as calculated by
SourceMeter, for selected metrics that capture similar aspects
of the source code as the ones described in Table I. Table II
also contains the p-values from the Wilcoxon’s signed rank
test, and the percentage of files for which the metric increased,
decreased, and remained the same for readability and non-
readability commits. We computed the Cliff’s d to measure
the effect size of those differences and for all metrics shown
in Table II, and regarding readability commits, the effect size
is negligible, except for Number of Incoming Invocations
for which we observe a small effect size. First, we observe
that the overall, the trends between readability and non-
readability commits are very similar. One exception is Number
of Incoming Invocations where the percentage of files where
the values of the metric increase is 46.88% for readability
commits and 26.60% for non-readability commits. Despite the
fact that most metrics remained the same after a readability
commit, interesting trends can still be seen in the remaining
file pairs for which these metrics do change. For example,
for Public Undocumented API, we can see that for 56% of
the files, the metric didn’t change, but we can see that it
also decreased in 37% of the files, while only increasing in
5% of the files. In this case, we see that although Public
Undocumented API doesn’t change in the majority of the files,
when it does change, it tends to decrease rather than increase.

As outlined in Table I, Posnett’s model uses Halstead’s
vocabulary as part of the algorithm. On our dataset, Halstead
Program Vocabulary is not significantly different before and
after readability changes. Posnett et al. explored Halstead Dif-
ficulty and Effort during the creation of their model and found
that neither metric contributed significantly to the model.
However, we observe that Halstead Effort is significantly
different between the two populations but with negligible
effect size.

Lines of code for file level metrics is significant (with
negligible effect size), with 31% of files having an increase
in lines of code. However, method level lines of code is not
significantly different. Both Dorn’ and the Buse & Weimer
model’s use comments as metrics. SourceMeter calculates
several documentation related metrics. Results show that doc-
umentation lines of code and comment density are not signif-
icantly different for files before and after readability changes.
However, API documentation, public undocumented API and

public documented API are all statistically significant (with
negligible effect size). Public documented API and public
undocumented API appear to have several false positives,
as manual inspection of some samples revealed that these
metrics change across a before-after pair, despite the absence
of documentation insertions or removals.

Number of parentheses is also measured by SourceMeter,
however there is no significant difference between the two
populations.

Results also show that several complexity metrics de-
crease significantly between files before and after readabil-
ity improvements are made. McCabes cyclomatic complexity
(MCC), and nesting level changes indicate less complex source
code after readability changes (negligible effect size). This
means that certain complexity features might be important to
incorporate into readability models. However, the Maintain-
ability Index, which is calculated based on cyclomatic com-
plexity, Halstead Volume, and lines of code mainly decreases.
Maintainablity Index has been criticized for not being well
defined as it is built on correlated metrics among others [31].

We see that coupling metrics, such as the Number of
Incoming Invocations, are significantly different (with small
effect size), and increase for a large part of the files (46.88%)
after readability changes are made.

RQ2 Summary: Results show that additional metrics that
are currently not used by readability models such as the
Number of Incoming Invocations increase significantly
when readability is improved and for a larger number of
files compared to non-readability commits. Such metrics
could be used as complementary measures to measure
readability.

C. RQ3: What types of changes do developers perform during
readability improvements?

In order to answer this research question we explore the
types of changes developers perform using ChangeDistiller,
CheckStyle, and RefactoringMiner.

1) ChangeDistiller: ChangeDistiller detected a total of
14,130 and 9,206 changes in the readability and non-
readability commits, respectively. In Table III we report se-
lected changes (grouped in four categories: delete, insert,



TABLE II
SOURCE METER RESULTS INDICATING THE PERCENTAGE OF FILES WITH AN INCREASE, DECREASE, AND NO CHANGE FOR EACH METRIC VALUE IN

READABILITY AND NON-READABILITY COMMITS. SIGNIFICANT P-VALUES ARE MARKED WITH (*). THE HIGHEST PERCENTAGES ARE IN BOLD.

Category Metric Readability Commits Non-Readability Commits

P-Value % Increase % Decrease % Equal P-Value % Increase % Decrease % Equal

Complexity metrics Halstead Difficulty 0.24 28.12 26.72 45.14 0.00 (*) 34.77 26.40 38.74
Halstead Effort 0.00 (*) 28.40 30.08 38.34 0.00 (*) 37.58 26.32 31.54
Halstead Program Vocabulary 0.85 28.13 25.22 46.65 0.00 (*) 36.09 22.52 41.31
Maintainability Index 0.03 (*) 29.52 37.17 33.31 0.00 (*) 25.33 39.32 35.26
MCC 0.00 (*) 8.76 14.00 77.23 0.00 (*) 19.04 12.42 68.46
Nesting Level 0.00 (*) 7.59 11.44 80.97 0.02 (*) 13.82 10.35 75.75
WMC 0.57 13.17 11.68 75.14 0.00 (*) 28.58 6.74 64.68

Documentation metrics Documentation Lines of Code 0.51 8.15 8.09 83.76 0.00 (*) 10.71 4.32 84.97
Comment Density 0.88 33.54 36.07 30.38 0.00 (*) 20.64 34.02 45.34
API Documentation 0.00 (*) 11.17 42.61 46.22 0.00 (*) 10.62 38.77 50.60
Public Undocumented API 0.00 (*) 5.33 37.86 56.82 0.00 (*) 9.33 34.02 56.65
Public Documented API 0.00 (*) 2.23 49.43 48.34 0.00 (*) 3.11 43.26 53.63

Size metrics # Parantheses 0.94 10.27 10.77 78.96 0.83 10.93 12.33 76.66
File Lines of Code 0.00 (*) 31.04 23.71 45.25 0.00 (*) 44.47 13.82 41.71
Method Lines of Code 0.53 24.94 24.72 50.33 0.00 (*) 30.55 20.53 48.84

Coupling metrics Number of Incoming Invocations 0.00 (*) 46.88 3.07 50.06 0.00 (*) 26.60 0.69 72.71
Response set For Class 0.00 (*) 23.20 8.99 67.81 0.00 (*) 22.97 5.87 71.16

Cohesion metrics Lack of Cohesion in Methods 5 0.42 4.12 4.87 91.01 0.31 4.84 4.58 90.59

TABLE III
CHANGES DETECTED BY CHANGEDISTILLER. OVERALL PERCENT OF
CHANGES IS CALCULATED ACROSS ALL DETECTED CHANGES; WITHIN

GROUP CHANGES ARE CALCULATED PER CHANGE TYPE GROUP.

Change Non-Readability Readability

Overall Group Overall Group

D
el

et
e

REMOVED OBJECT STATE 1.19% 4.97% 1.45% 4.90%
COMMENT DELETE 1.24% 5.15% 1.27% 4.31%
ALTERNATIVE PART DELETE 1.43% 5.96% 0.73% 2.46%
REMOVED FUNCTIONALITY 2.42% 10.07% 2.04% 6.89%
STATEMENT DELETE 16.93% 70.42% 22.05% 74.50%

In
se

rt

COMMENT INSERT 1.93% 4.65% 0.73% 3.84%
ADDITIONAL OBJECT STATE 3.14% 7.55% 1.72% 9.07%
ADDITIONAL FUNCTIONALITY 4.68% 11.26% 2.87% 15.12%
STATEMENT INSERT 27.07% 65.12% 10.76% 56.74%
PARAMETER INSERT 0.95% 2.27% 1.06% 5.60%

M
ov

e STATEMENT ORDERING CHANGE 1.68% 19.45% 2.87% 37.42%
STATEMENT PARENT CHANGE 6.53% 75.41% 4.46% 58.06%

U
pd

at
e

METHOD RENAMING 0.70% 2.70% 0.53% 1.21%
DOC UPDATE 0.96% 3.72% 1.27% 2.91%
ATTRIBUTE RENAMING 0.54% 2.11% 2.74% 6.26%
CONDITION EXPRESSION CHANGE 3.49% 13.56% 5.87% 13.42%
STATEMENT UPDATE 18.67% 72.59% 30.91% 70.61%

move, and update) that are present in the largest number of
files of readability commits.

Update changes make up around 40% of the total
changes detected in files by ChangeDistiller. Statement
updates are the most frequent type of the changes; they
affect every single commit that we analyzed. Moreover, we
observe that renaming (attribute, method, and parameter
renamings) and documentation updates are among the most
common types of update changes. On inspection, we found
that a large percentage of the renamings were concerned
with changing attribute names to comply with preexisting
convention. For example, adding an ‘m’ prefix to signify
private class attributes was a frequent renaming change
(e.g., hasValidTlvObject to mHasValidTlvObject).
Convention compliance changes also included changing
attribute names from camel case to snake case (e.g.,
shouldHelpOutWithUnnecessaryCastingOfLists()

to should_help_out_with_unnecessary_casting_of

_lists()) and changing constant attributes from lower
to upper case (e.g., sMimeTypePriorityList to
MIME_TYPE_PRIORITY_LIST). Renaming is also used
to give identifiers more descriptive names, for example,
col is changed to column and color1 to startColor.
Documentation updates, which indicate a change in leading
method or class comments are also popular changes.
We sampled 50 of these documentation updates for manual
investigation, which revealed that they were mostly formatting
changes and minor edits to the language, but did not add any
new information about the code block being documented.
ChangeDistiller found also 18 documentation updates
that concern deprecated methods or classes. However,
ChangeDistiller classified 45 instances where a blank line
was added to the code as a statement update.

Insert changes are the next most popular type of change,
making up 30% of the changes. Statement insert (i.e., new
lines added to a method) and additional functionality changes
(i.e., new methods added to a class) are the most popular
types of changes. Comment and documentation inserts are also
popular changes, affecting 51 and 44 files respectively. For
example, we found 4 instances where ChangeDistiller detected
insertion of TODO comments.

Delete changes make up 25% of the detected changes. As
in other groups, statement deletes affect the largest amount of
files. Note that comment deletes also affect a similar number
of files as comment inserts. We examined a sample of these
files that had both comment inserts and deletes, and we found
that ChangeDistiller detects a comment update as a comment
delete and a comment insertion. Also, reorganizing code along
with the comments, for example extracting code into a new
method, also counts as a comment insert and a comment
delete. ChangeDistiller found 140 instances where a blank line
has been removed from the code. Moreover, deletion of TODO
comments affected 54 different files. 62 out of 87 instances



of deleted documentation has to do with deleting inherited
documentation.

We compare the results of ChangeDistiller for the read-
ability and non-readability commits and report the results
in Table III. We observe several differences between the
types of changes in the two datasets. For instance, the most
frequent change detected for readability commits is statement
updates followed by statement deletes. For the non-readability
commits, the most frequent change detected is statement insert,
followed by statement update. Results also show that non-
readability commits have more added and removed func-
tionality than readability commits. This could indicate that
readability commits tend to preserve functionality and modify
existing code, rather than introduce new statements. Readabil-
ity and non-readability changes follow a similar trend when
we consider the the most frequent types of changes within
the 4 different change categories. However, considering move
changes, the non-readability commits have substantially more
statement parent changes than readability commits. In addi-
tion, statement ordering changes are seen often in readability
commits. Overall, when performing readability improvements
developers perform statement updates and reordering more
often than in non-readability commits.

2) CheckStyle: Table IV contains the warnings that have the
largest difference in percentage of files affected by a warning
after readability improvements took place. Overall, we observe
that for readability commits warnings get fixed, whereas for
non-readability commits they tend to increase.

The AvoidStarImport warning is generated when import
statements contain the ‘*’ notation. The rationale behind this
check is that using the ‘*’ notation imports all classes from
a package or static members from a class. This leads to high
coupling between packages or classes, and is considered a
poor practice. Results show that this warning affected 15.78%
of files before readability changes, and only 7.8% after. This
is a 7.82% decrease in the number of files affected by the
warning, meaning developers update import statements during
readability changes. In contrast, for non-readability commits
we observe an increase of 1.24%.

WhitespaceAfter, WhitespaceAround, CommentsIndenta-
tion, RightCurly, NeedBraces, and ParenPad are all warnings
that are generated by CheckStyle due to formatting and style
issues in the code. Files that have been altered to improve read-
ability are affected by less warnings related to formatting and
style issues overall. NonEmptyAtClauseDescription checks to
make sure that at-clause tags, like @param and @return, are
followed by a description. We notice a 2.06% decrease in the
number of files affected by this warning, this means that more
documentation is written after these tags during readability
improvements.

In recent work by Pantiuchina et al. [22], some instances
of readability improvements not captured by the state of the
art readability models had to do with the removal of magic
numbers from the source code. We observe a 1.59% decrease
in the number of files containing magic number warnings
after readability improvements have been made, which sup-

TABLE IV
CHECKSTYLE WARNINGS IN READABILITY AND NON-READABILITY

COMMITS.

Warning Readability Non-Readability

Before After Delta Before After Delta

AvoidStarImport 15.78% 7.96% ↓ 7.82% 10.06% 11.3% ↑ 1.24%
WhitespaceAfter 34.17% 26.82% ↓ 7.35% 16.35% 18.62% ↑ 2.27%
WhitespaceAround 32.13% 25.87% ↓ 6.25% 19.56% 21.23% ↑ 1.67%
CommentsIndentation 17.36% 12.57% ↓ 4.79% 12.03% 12.71% ↑ 0.68%
UnusedImports 17.27% 14.42% ↓ 2.85% 13.14% 14.08% ↑ 0.94%
RightCurly 14.30% 12.05% ↓ 2.25% 10.32% 11.39% ↑ 1.07%
MagicNumber 36.58% 35.00% ↓ 1.59% 22.3% 25.39% ↑ 3.08%
NonEmptyAtclauseDescription 36.98% 34.92% ↓ 2.06% 6.85% 7.28% ↑ 0.43%
ParenPad 8.94% 7.16% ↓ 1.78% 12.2% 14.55% ↑ 2.35%
NeedBraces 23.26% 21.78% ↓ 1.48% 14.21% 15.24% ↑ 1.03%

ports their observation and indicates that static analysis tools
appear to be complementary to readability models. Overall,
readability improvements have the greatest impact on the fol-
lowing changes as detected by CheckStyle: import statements,
formatting and style of the source code, and the occurrence of
magic numbers.

3) RefactoringMiner: Table V contains the number of files
affected by different refactorings as detected by Refactor-
ingMiner for readability and non-readability commits. For
readability commits, attribute and variable renamings are the
most common type of refactorings; they are less frequent in
non-readability commits. Renaming methods and parameters
are also popular refactorings. Although the metrics defined
in Scalabrino’s model were designed to capture readability of
source code lexicon, given the model’s performance, changes
related to identifier naming could be useful in improving
the model’s performance. We observe that refactorings such
as extract method, inline method, parameterize variable, and
rename class are also very frequent for readability commits
and are almost absent in non-readability commits. The nature
of the most frequent refactorings indicates that readability
changes may have more to do with the quality of the source
code lexicon, through the renaming of identifiers, than the
refactoring of design and functional elements of the code.
Overall, both lexical changes like renames, and structural
changes like extract method and variable are important refac-
torings that take place during readability improvements.

RQ3 Summary: When comparing readability and non-
readability commits we observe that readability commits
tend to fix problems that pertain to imports, white spaces,
and braces whereas non-readability imports tend to intro-
duce more of such problems. Moreover, refactorings such
as extract method, inline method, parameterize variable,
and rename class are very specific to readability commits
and almost non-existent for non-readability commits. Thus,
tools such as CheckStyle and RefactoringMiner can be used
in addition to current readability models to detect fine grane
readability changes.



TABLE V
REFACTORINGS DETECTED BY REFACTORINGMINER FOR READABILITY

AND NON-READABILITY COMMITS.

Readability Non-Readability

Refactoring # % # %

Extract And Move Method 6 0.72% 0 0.00%
Extract Class 1 0.12% 0 0.00%
Extract Method 124 14.94% 0 0.00%
Extract Operation 0 0.00% 30 15.00%
Extract Variable 37 4.46% 19 9.50%
Inline Method 68 8.19% 0 0.00%
Inline Operation 0 0.00% 1 0.50%
Inline Variable 15 1.81% 2 1.00%
Move Attribute 1 0.12% 0 0.00%
Move Class 1 0.12% 1 0.50%
Move Method 1 0.12% 0 0.00%
Parameterize Variable 18 2.17% 2 1.00%
Rename Attribute 183 22.05% 19 9.50%
Rename Class 31 3.73% 1 0.50%
Rename Method 96 11.57% 57 28.50%
Rename Parameter 73 8.80% 16 8.00%
Rename Variable 170 20.48% 50 25.00%
Replace Variable With Attribute 5 0.60% 2 1.00%

TABLE VI
MOST COMMON WORDS AND THEIR PERCENTAGE IN COMMIT

COMMENTS.

Readability Non-Readability

Words % commits Words % commits

code 24.32 fix 18.44
improve 21.96 change 15.84
test 17.06 bug 12.19
make 14.36 test 11.29
commit 13.35 use 10.97
method 12.16 commit 9.26
refactor 11.99 add 8.69
use 11.82 log 7.55
add 10.47 remove 7.47
fix 9.79 code 6.25
class 9.62 class 6.17
better 8.95 create 6.09
create 8.44 set 5.76
remove 7.43 update 5.44
move 7.40 support 5.44

D. RQ4: What types of changes do developers describe in
commit comments related to readability improvements?

To answer this research question we explore the types
of changes developers describe in commit comments while
improving source code readability and we compare them to
changes described in non-readability commits. In particular,
we look into frequently used words, part of speech tagging,
and grammatical dependencies on commit comments.

1) What are the most frequently used words?: Table VI
contains the 15 most frequent words developers use and the
percentage of commit comments in our dataset in which that
particular word appeared.

Words such as ‘improve’, ‘refactor’, and ‘better’ indeed ap-
pear frequently in commits that improve readability (21.96%,
11.99%, and 8.95%, respectively), as one might expect, and

have lower frequencies in commits that do not target readabil-
ity improvements (1.46%, 4.63%, and 0.81%, respectively).
Other words such as ‘add’, ‘remove’, ‘create’, ‘class’, and
‘method’ confirm results found in RQ3. As discussed in the
results for RefactoringMiner in RQ3 for readability commits,
some of the most popular refactorings pertain to extracting,
removing, and renaming methods or classes and using and
adding/creating inline variables or methods. Examples of such
commit messages are: “removed deprecated methods of Ren-
derEnvironment”, “Renamed a method for better readability”,
“Add boolean variables for improved readability”, “Splits the
main method in ClusterService into smaller chunks so that
it’s easier to understand and simpler to modify in subsequent
PRs”, and “Minor internal refactor of InferJSDocInfo to
make it more readable”.

Attribute and variables may not appear in the top
most frequent words in the readability commits because
developers often refer to them by their explicit names
in commit messages. For example the commit com-
ment: “Renaming CheckRequiresForConstructors to
CheckMissingAndExtraRequires for readability’s sake”.

2) What types of actions are described, and on what as-
pects of source code?: For each verb tagged in the readability
commit messages, we retrieve its most common verb-object
pairs. In Table VII we show the 5 most frequent verbs found
in our dataset for readability commits. For each verb, we show
the frequency of the verb in our oracle, the 5 most frequent
objects it was used with, and the frequency of the verb-
object pair. As we can see from Table VII, developers clean
the code, API, test and documentation/usage (e.g., “cleaned
up getDimensionValues code”) while improving code, class,
comment and stack readability (e.g., “Improve readability of
code”) by adding new fields, documentation, tests etc. (e.g.,
“Add a couple new tests for ES6 classes and modules, and
reformat existing tests for readability”). They also make new
files, class, and examples (e.g., “Make uninitialization code in
DefaultChannel easier to understand”) and use new methods,
spaces, and lines in the code (e.g., “Use fireChangeEvent()
method to improve code readability”) for improving source
code readability.

To verify which types of changes, as discovered in RQ3
for readability commits, developers document, we specif-
ically look for the actions found by RefactoringMiner in
commit messages. We analyze 5 such verbs and look for
some insightful verb-object pairs for each of these verbs
in our dataset. In the following we provide examples of
pairs and the number of commits in which they occur in
parentheses: remove (44 occurrences): ‘method’, ‘test’, ‘class’
(e.g., “remove duplicate/unneeded methods and fields”), fix
(36 occurrences): ‘error’, ‘bug’, ‘text’ (e.g., “Fix copy/-
paste error Add whitespace to aid readability”), refactor
(28 occurrences): ‘method’, ‘code’, ‘class’ (e.g., “refac-
tor code to make it more readable, less invasive”), move
(25 occurrences): ‘constructor’, ‘class’, ‘comment’ (e.g.,
“move test security classes from templates.security package
to com.gemstone.gemfire.security.templates”), and rename (16



TABLE VII
MOST FREQUENT VERBS WITH TOP 5 OF THEIR OBJECTS.

Verbs Freq. Objects (number of co-occurrences with verb)
clean 163 code (21), api (17), test (11), javadoc (6), usage (6)
make 107 code (2), commit (2), class (2), file (2), example (2)
improve 98 readability (76), code (4), class (4), comment (2), stack (2)
add 98 readability (9), test (7), javadoc (6), dialog (5), field (4)
use 54 readability (4), lambda (2), method (2), space (2), line (2)

occurrences): ‘method’, ’variable’, ‘example’ (e.g., “Rename
variables for readability”). In the results for RQ3, we found
that the most popular code changes have to do with re-
naming, extracting, removing, and moving methods, variables
and classes for readability commits. These findings further
validates our results in RQ3 by showing that developers
explicitly state in the commit messages that the purpose of
those refactorings is to improve readability.

To gain more depth on the objects (e.g., when developers are
commenting on classes what type of classes they are talking
about or when developers are doing tests what type of tests
they are performing), we retrieved the most common noun
phrases each object was used with. In Table VIII we show
the 5 most frequent objects found in our dataset. For each
object, we show the frequency of the object in our oracle,
the 5 most frequent noun phrases it was used with, and
the number of times the noun phrases were used with the
respective object. As we can see from Table VIII, developers
are talking about changes in the main method (e.g., “Splits
the main method in ClusterService into smaller chunks so that
it’s easier to understand and simpler to modify in subsequent
PRs”), removing duplicated code and reusing code (e.g., “To
make it easier to understand PoolChunk and PoolArena we
should cleanup duplicated code”) while improving readability.
Also, they look into nested classes, inner classes, and utility
classes (e.g., “Clean-up after extracting nested classes from
CallLogFragment”) and do tests like distributed tests, con-
nectivity tests, builder test, and compare test (e.g., “Increase
timeout for a flaky distributed test”) while improving the
source code readability.

RQ4 Summary: By analyzing the commit messages related
to readability commits we find that developers document
the types of changes and refactorings that they perform to
improve readability. We also found that keywords such as
‘improve’ and ‘refactor’ are more frequent in readability
commits in comparison to non-readability commits. Thus,
metrics based on commit messages can bring additional
information not captured by existing readability models.

IV. THREATS TO VALIDITY

This section discusses the threats to validity that can affect
our study. A common classification [32][33] involves five
categories, namely threats to conclusion, internal, construct,
external, and reliability validity.

Threats to conclusion validity concern the relation between
the treatment and the outcome. We used multiple statistical

procedures, including measures for effect size which indicate
the magnitude and significance of the results. We use the
appropriate statistical tests for our data, without the assumption
of normality or independence between groups.

Threats to internal validity concern external factors we did
not consider that could affect the variables and the relations
being investigated. The biggest threat to internal validity is
the experience of the developers who wrote the code and
commit messages used in our dataset. Although we evaluated
the commit messages manually, we can not be certain that the
developers have sufficient understanding about what makes
readable or unreadable source code, or that their perceptions
of readability are generalizable to the developer community.
To mitigate this threat we control the quality of the repositories
used in our dataset by only using engineered projects.

Threats to construct validity concern the relation between
theory and observation. One of the major threats to construct
validity in this work pertains to the creation of the oracle.
Misclassification of commits in which developers state read-
ability improvements is possible. To mitigate this threat, two
of the authors of this paper went through the set of commits
to ensure that developers’ changes are indeed readability
changes. In case of a doubt, the commit was excluded from
the dataset. Misclassification of tangled commits is another
threat. Both validators went through all 548 commits where
the change involved more than one file and untangled commits
manually. In case of a doubt (e.g., commits that were too
tangled, or files that contained too many changes unrelated to
readability improvements) commits were discarded. Another
threat to construct validity are the metrics considered in the
paper. We select a variety of static analysis tools to generate
metrics on commit data before and after readability changes
are implemented. However, the conclusion drawn depend on
the accuracy of these tools, and the metrics they are able to
collect. Different tools could lead to different results.

Threats to external validity concern the generalizability of
the findings outside the experimental settings. Potential threats
to external validity in this study include the selection of sam-
pled open source applications, which may not be representative
of the studied population. We extracted 548 instances of source
code readability from 63 engineered Java software projects. A
different dataset could lead to different conclusions.

Threats to reliability validity concern the ability to replicate
a study with the same data and to obtain the same results.
We use open-source software projects whose source code is
available. Moreover, we provide all the necessary details to
replicate the analysis in our online replication package [2].

V. RELATED WORK

A. Code Readability Models

Buse and Weimer [6] conduct a study investigating code
readability metrics and find that structural metrics such as the
number of branching and control statements, line length, the
number of assignments, and the number of spaces negatively
affect readability. They also show that metrics such as the num-



TABLE VIII
MOST FREQUENT OBJECTS WITH TOP 5 OF THEIR NOUN PHRASES.

Objects Frequency Phrases (number of co-occurrences with objects)
readability 173 readability (67), better readability (21), code readability (10), improved readability (4), readability of code (3)
code 57 code (19), the code (14), some code (2), duplicated code (1), reused code (1)
method 47 a method (4), methods (3), the method (3), the main method (2), some methods (2)
test 41 test (9), a flaky distributed test (2), connectivity tests (2), the builder test (2), canvas compare tests (2)
class 40 class (4), the class (4), nested classes (3), inner classes (2), stream items utility class (2)

ber of blank lines, the number of comments, and adherence to
proper indentation practices positively impact readability.

Posnett et al. [24] show that metrics such as McCabe’s
Cyclomatic Complexity [18], nesting depth, the number of
arguments, Halstead’s complexity measures [13], and the
overall number of lines of code impact code readability. An
empirical evaluation conducted on the same dataset used by
Buse and Weimer [6] indicates that the model by Posnett et
al. is more accurate than the one by Buse and Weimer.

Scalabrino et al. [28] propose and evaluate a set of fea-
tures based entirely on source code lexicon analysis (e.g.,
consistency between source code and comments, specificity of
the identifiers, textual coherence, comments readability). The
model was evaluated on the two datasets previously introduced
by Buse and Weimer [6] and Dorn [8] and on a new dataset,
composed by 200 Java snippets, manually evaluated by nine
developers. The results indicate that combining the features
(i.e., structural and textual) improves the accuracy of code
readability models.

In this paper, we do not intend to devise a new readability
model rather we investigate three existing state of the art read-
ability models i.e., the original model proposed by Scalabrino
et al. [28], the model proposed by Dorn et al. [8], and the
combined model proposed by Scalabrino et al. [28].

B. Code Quality Metrics in Practice
Code quality metrics are at the core of many approaches

supporting software development and maintenance tasks. They
have been used to automatically detect code smells [15], [20],
to recommend refactorings [19], [25], and to predict the code
fault- and change-proneness [12], [17], [34]. Some of these
applications assume that a strong link between code quality
as assessed by metrics and as perceived by developers exists.

Scalabrino et al. [27] perform an extensive evaluation of
121 existing as well as new code-related ([6], [8], [24], [29]),
documentation-related ([29] and 2 newly introduced), and
developer-related (3 newly introduced) metrics. They try to
(i) correlate each metric with understandability and (ii) build
models combining metrics to assess understandability. To do
this, they use 444 human evaluations from 63 developers and
obtain a bold negative result: none of the 121 experimented
metrics is able to capture code understandability, not even the
ones assumed to assess quality attributes apparently related,
such as code readability and complexity.

Indeed, code smell detectors and refactoring recommenders
should be able to identify design flaws/recommend refac-
torings that align with developer’s perception in practice.

While such an assumption seems reasonable, there is limited
empirical evidence supporting it. Pantiuchina et al. [22] aim at
bridging this gap by empirically investigating whether quality
metrics are able to capture code quality improvement as
perceived by developers. While previous studies [4], [7], [26]
surveyed developers to investigate whether metrics align with
their perception of code quality, they mine commits in which
developers clearly state in the commit message their aim of
improving one of four quality attributes: cohesion, coupling,
code readability, and code complexity. They use state-of-the-
art metrics to measure the changes relative to the specific
quality attribute it targets. To measure code readability, the
authors exploit two state-of-the-art metrics. The first one was
presented by Buse and Weimer et al. [6] and the second metric
is the one proposed by Scalabrino et al. [29]. Code readability
is the quality attribute for which the authors observed the less
perceivable changes in the metrics’ values. This holds for both
metrics they employed, despite the metrics use totally different
features when assessing code readability. The two metrics
report only 28% [6] and 38% [29] of the modified classes
as improving their readability after the changes implemented
in the commits.

In contrast to previous work, which evaluates readability
based on surveying techniques, we aim to understand whether
state-of-the-art readability models are able to capture read-
ability improvements as explicitly tagged by developers in
commits messages.

VI. CONCLUSION

This paper presents a study on the theory and practice of
measuring source code readability changes. In particular, we
investigate three state of the art models and the degree to which
they are able to detect source code readability improvements
as tagged by open source developers of 63 engineered Java
projects. Our results confirm recent findings that those models
fail to capture readability improvements and thus do not appear
to be suitable for day to day maintenance tasks. We also
study additional metrics that are not considered by state of
the art models and we detect changes and refactorings that
developers use to implement readability improvements. We
show examples of metrics and changes/refactorings that are
successful in detecting readability improvements and thus must
be considered when building readability models.

As part of the future work we plan to analyze in more details
renamings and documentation changes and use tools such as
REPENT [3] to classify the renamings.
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