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Abstract—Deep neural networks is a popular technique that
has been applied successfully to domains such as image process-
ing, sentiment analysis, speech recognition, and computational
linguistic. Deep neural networks are machine learning algorithms
that, in general, require a labeled set of positive and negative
examples that are used to tune hyper-parameters and adjust
model coefficients to learn a prediction function. Recently, deep
neural networks have also been successfully applied to certain
software engineering problem domains (e.g., bug prediction),
however, results are shown to be outperformed by traditional
machine learning approaches in other domains (e.g., recovering
links between entries in a discussion forum).
In this paper, we report our experience in building an auto-
matic Linguistic Antipattern Detector (LAPD) using deep neural
networks. We manually build and validate an oracle of around
1,700 instances and create binary classification models using tra-
ditional machine learning approaches and Convolutional Neural
Networks. Our experience is that, considering the size of the
oracle, the available hardware and software, as well as the theory
to interpret results, deep neural networks are outperformed by
traditional machine learning algorithms in terms of all evaluation
metrics we used and resources (time and memory).
Therefore, although deep learning is reported to produce results
comparable and even superior to human experts for certain
complex tasks, it does not seem to be a good fit for simple classi-
fication tasks like smell detection. Researchers and practitioners
should be careful when selecting machine learning models for
the problem at hand.

Index Terms—Antipattern Detection, Machine Learning, Con-
volutional Neural Networks.

I. INTRODUCTION

Deep neural networks, and more generally, deep learning
approaches have proven useful in many fields and applica-
tions. They are able to extract, find and summarize complex
patterns in large data sets. The hype is that they substantially
simplify the development of sophisticated recommendation or
classification systems.

Recently, deep neural networks have also been applied to
certain software engineering problems with some success. For
example, they were able to improve upon the best known
results in traceability recovery between software artifacts [1],
and exciting results have been achieved in semantic clone
detection [2]. However, not all problems are equal. There

are problem instances, such as bug prediction or identifier
completion where training material is abundant and freely
available. Other problems may require extensive manual effort
and validation to build a labeled dataset. Regardless of the
problem at hand, one should always apply “lex parsimoniae”
also known as Occam’s razor. Between two competing the-
ories or models giving the same results, the simplest one to
understand and interpret should be preferred. Indeed, one has
to balance different factors. On the one hand, the ability to
capture, summarize, and model information and dependencies
makes deep neural networks extremely appealing; on the other
hand, they require complex hyper-parameter and architecture
tuning, sizable labeled datasets for training, and quite powerful
hardware architectures and resources.

In this paper, we report our experience of building an
automatic Linguistic Antipattern Detector (LAPD) using tradi-
tional machine learning approaches and deep neural networks,
namely, Convolutional Neural Network (CNN). At the high
level our research goal can be stated as: Do traditional
machine learning classifiers outperform CNN for the task of
linguistic smell detection? In other words, are Fu and Menzies
results [3] reproducible? To achieve our goal, we apply the
same deep learning architecture used by Fu and Menzies [3],
namely, CNN, and similarly, we compare against traditional
machine learning algorithms. However, we applied a structured
methodology to define CNN hyper-parameter and architecture
inspired by Zhang and Wallace [4], [5]. In addition, we
have manually built and validated an oracle of around 1,700
instances (half of which contain linguistic antipatterns) and
created binary classification models using Random Forest,
SVM, J48, Naı̈ve Bayes, and CNN.

Our results confirm the findings and recommendations of the
recent work by Fu and Menzies [3]; on a completely different
task we find that traditional approaches outperform CNN in
terms of all evaluation metrics that we used, as well as, in
terms of time and memory resources. Considering the size of
the oracle, the available hardware and software, as well as
theory to interpret results, deep neural networks do not pass
the Occam’s razor test. They are cumbersome to define (the
software configuration hugely depends on the hardware plat-
form where code is executed), they are slow, resource hungry,
and almost impossible to interpret. On the contrary, traditional978-1-5386-4969-5/18/$31.00 ©2018 IEEE



machine learning algorithms run much faster, require far less
tuning, can run on a standard laptop, and ultimately achieve
from similar to better results depending on the tuning used
to configure them. Furthermore, the complexity of the deep
learning approach hinders the ability of researchers to test the
stability of their conclusions and the potential for replication
and improvement of the results by others.
This paper makes the following contributions:

• We provide evidence that when correctly tuned, tradi-
tional machine learning classifiers can substantially out-
perform deep learning approaches in the context of smell
detection

• We successfully replicate the results of Fu and Menzies
and provide a more methodological exploration of deep
learning vs traditional machine learning classifiers within
the problem space.

• We provide an oracle of 1,753 instances of source code
elements and the LA type that they contain, if any, to
support future research on LAs. A curated replication
package containing the manually built oracle is available
online1

Paper Organization. The rest of the paper is organized as
follows. In Section II, we present background information
about LAs and ML classifiers. We survey the related work in
Section III. In Section IV, we present our analysis approach.
We answer the research questions in Section V and discuss the
threats to validity of our study in Section VI. We conclude the
paper in Section VII.

II. BACKGROUND

In this Section, we provide a brief background on Lin-
guistic Antipatterns (Section II-A), on the Machine Learning
algorithms that we used (Section II-B), and on CNNs (Sec-
tion II-C).

A. Linguistic Antipatterns (LAs)

Linguistic Antipatterns (LAs), are recurring poor practices
in the naming, documentation, and choice of identifiers in the
implementation of program entities. These LAs are reported to
possibly impair program understanding [6]. In the remainder
of this section, we list the LAs and their definition as described
by Arnaoudova et al. [6].
A.1 “Get” - more than an accessor: A getter that performs

actions other than returning the corresponding attribute
without documenting it.

A.2 “Is” returns more than a Boolean: Method name is a
predicate, whereas the return type is not Boolean but a
more complex type allowing a wider range of values.

A.3 “Set” method returns: A set method having a return
type different than void and not documenting the return
type/values with an appropriate comment.

A.4 Expecting but not getting a single instance: Method name
indicates that a single object is returned but the return
type is a collection.

1https://github.com/Smfakhoury/SANER-2018-KeepItSimple-

B.1 Not implemented condition: The method’ comments sug-
gest a conditional behavior that is not implemented in the
code. When the implementation is default this should be
documented.

B.2 Validation method does not confirm: A validation method
that neither provides a return value informing whether
the validation was successful, nor it documents how to
proceed to understand.

B.3 “Get” method does not return: The name suggests that
the method returns something (e.g., name starts with
“get” or “return”) but the return type is void. The
documentation should explain where the resulting data
is stored and how to obtain it.

B.4 Not answered question: The method name is in the form
of predicate, whereas nothing is returned.

B.5 Transform method does not return: The method name
suggests the transformation of an object, however there is
no return value and it is not clear from the documentation
where the result is stored.

B.6 Expecting but not getting a collection: The method name
suggests that a collection should be returned, but a single
object or nothing is returned.

B.7 Get method does not return corresponding attribute: A
get method does not return the attribute suggested by its
name.

C.1 Method name and return type are opposite: The intent
of the method suggested by its name is in contradiction
with what it returns.

C.2 Method signature and comment are opposite: The doc-
umentation of a method is in contradiction with its
declaration.

D.1 Says one but contains many: An attribute name suggests
a single instance, while its type suggests that the attribute
stores a collection of objects.

D.2 Name suggests Boolean but type does not: The name of
an attribute suggests that its value is true or false, but its
declaring type is not Boolean.

E.1 Says many but contains one: Attribute name suggests
multiple objects, but its type suggests a single one.

F.1 Attribute name and type are opposite: The name of an
attribute is in contradiction with its type as they contain
antonyms.

F.2 Attribute signature and comment are opposite: Attribute
declaration is in contradiction with its documentation.

B. Machine Learning (ML) Models

We select five different machine learning approaches be-
longing to several different categories: rule learners, deci-
sion trees, Support Vector Machines, and Bayesian Networks.
Recent research has shown that these algorithms perform
well when predicting fault-prone code [7]–[9]. We use the
implementations provided through Weka [10] and then tune
the classifiers by hand using various thresholds. We then use a
more sophisticated approach, based on bayesian optimization,
to find the most suitable model, hyperparameters and features
for the problem. The following is a list of the selected algo-
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rithms, their descriptions and thresholds used during manual
tuning:

1) Random Forest (RF): RF [11] averages the predictions
of a number of tree predictors where each tree is fully grown
and is based on independently sampled values. A large number
of trees avoids overfitting. Random Forest is known to be
robust to noise and to correlated variables. We use a number of
trees of 500 as a starting point, which has shown good results
in previous works [12]. We tune the parameters for the number
of trees varying from 500 to 1000 and for the features explored
at each branch from the default value: (log2(#predictors)+1)
to 20% of the total number of features.

2) J48: J48 is an implementation of the C4.5 decision tree.
This algorithm produces human understandable rules for the
classification of new instances. The implementation provided
through Weka offers three different approaches to compute the
decision trees, based on the type of the pruning techniques:
pruned, unpruned, and reduced error pruning. We tune the
parameter for the minimum number of instances at each leaf
from 1 to 8.

3) Support Vector Machine (SVM): SVM is a machine
learning technique that tries to maximize the margin of the
hyperplane separating different classifications. Some of the
advantages of SVM include the possibility to model linear
and non-linear relations between variables and its robustness to
outliers. We used the Support Vector Machine model provided
by LibSVM in Weka with the Radial Basis Function (RBF)
and Polynomial kernels as they have shown good performance
in previous work [13]. We tune the parameters for the degree
of the kernel (1 to 4), the gamma value (0 to 1) and the cost
(1 to 50) based on recommendations from [3].

4) Sequential minimal optimization (SMO): SMO is an im-
plementation of John Platt’s sequential minimal optimization
algorithm to train a support vector classifier. We use RBF
kernel, Polynomial kernel, and the Pearson VII function-based
universal kernel (PUK) [14] in combination with this classifier.
We tune the exponent parameter of the classifier from 1.0 to
4.0.

5) Naive Bayes: Naive Bayes is the simplest probabilistic
classifier based on applying Bayes’ theorem. It makes strong
assumptions on the input: the features are considered condi-
tionally independent among each other. We explore the perfor-
mance of the classifier using kernel estimator and supervised
discretization.

C. Convolutional Neural Networks (CNNs)

Several deep learning architectures are available, however,
due to the textual nature of our data (i.e., sequences of
comment and source code tokens) we decided to explore CNN.

The idea of using a CNN was inspired by a paper written
by Kim [15]. He used a CNN for sentence-level classification
tasks and showed that one can achieve excellent performance
results with little parameter calibration.

Typically, CNNs were employed for image classifica-
tion [16]. A CNN can be thought of as a family of con-
volutions filters, as windows sliding across a whole matrix.

These windows are acting like filters extracting (summarizing)
information. For images, this matrix contains pixels, for sen-
tences, it contains word representations (e.g., vectors of word
embeddings–Google word2vec). Each sentence is represented
as a sequence of words and each word as a vector. Finally,
since sentences may have different length, matrices are zero
padded to the maximum sentence length.

To implement a CNN, one has to add several convolution
layers; each of these layers have a specific task and acts as
a different filter. Convolution layers are then followed by a
pooling layer. Each filter generates a feature vector of length
depending on the sentence length and filter size. Different
sentence lengths and filter sizes will generate feature vectors
of different size. This is not practical and it is cumbersome to
handle. A common strategy is to apply a max-pooling layer
which extracts the largest value from each feature. This is to
say, if we apply 16 filters of size two and three, no matter the
sentence length, after the pooling layer we will always have
16 values for the two size windows and 16 values for the filter
of size three. In other words, each sentence will be mapped to
a set of 32 feature values. The output of the pooling layer is
then fed into a fully connected layer to the output categories.

We experimented with one convolution layer, one pooling
layer, and a fully connected output later; this is to say,
we replicated the CNN structure studied and presented by
Kim [15] and by Zhang and Wallace [4], [5]; this allowed
us to reuse insights and perform the same methodological
steps to identify promising configurations (i.e., number of
filters and filter sizes). Also, we observed that words en-
coding specifically tied to the domain and task (i.e., non-
static word2vect CNN encoding in the work by Zhang and
Wallace [4]) perform comparably or equally well as more
complex encoding (e.g., encodings obtained using GloVe and
static word2vect) [4], [5]. Therefore, all CNN results reported
in the paper are computed with customized word embeddings
referred to as dynamic word2vect by Kim [15], Zhang and
Wallace [4], [5].

III. RELATED WORK

The most relevant works are application of deep learning to
sentence classification [4], [5], [15] and a very recent paper
in software engineering [3].

We were inspired to use CNN by the 2014 Kim’s work [15].
Kim compared on seven established data sets (e.g., MR,
TREC, MPQA) four CNN variants (e.g., static, multi-channel)
in term of accuracy with previously obtained results in 10-
fold cross validation experiments. Overall, he considered 14
previous papers that using a variety of classifiers (including re-
cursive neural networks, recursive auto-encoders, Naive Bayes
SVM, SVM manually tuned) have published classification
results on the same data sets. Interestingly, Kim found that
CNN performed (on average) equally or even better than
most classifiers but CNN was not always the best classifier.
In particular, on the TREC dataset the best classifier was a
manually tuned SVM. This corroborated us to experiment with
CNN as LAs are essentially linguistic structures but being



unsure of CNN performance we also decided to contrast CNN
results with other classifies as done by Kim. Kim finding
that CNN were not always the best classifier, was recently
confirmed on a software engineering problem and dataset by
Fu and Menzies [3]; they found that CNN was not performing
better than a carefully tuned SVM.

Also the work of Zhang and Wallace [4], [5] has been
an inspiration for us. We define the same CNN architec-
ture and follow the same methodology to tune the hyper-
parameters. This is important as it gives us a reference point
and a way to select various parameters namely: type of
embeddings, number of features and, windows size, gradient
optimization strategy and activation function. Last but not
least, commonalities exist between this work and the work
by Fu and Menzies [3]. Indeed, we have similar findings on a
different task: CNN are not necessarily better than traditional
machine learning approaches. However, Fu and Menzies use
SVM as the traditional machine learning algorithm whereas
we use Random Forest, SVM, J48, and Naı̈ve Bayes. In
addition, Fu and Menzies use Differential Evolution to tune
the parameters of SVM whereas we use basic parameter tuning
for all traditional machine learning algorithms and we use
more sophisticated tuning, based on Bayesian optimization,
to find the best model and features. We show that standard
tuning approaches of traditional machine learning algorithms
lead to results similar to results obtained with CNN while with
sophisticated tuning of traditional machine learning algorithms
significantly outperforms results obtained with CNN.

IV. METHODOLOGY

The goal of this study is to determine if deep learning is
well suited for detecting linguistic smells, and whether tradi-
tional machine learning classifiers can outperform CNN. The
perspective is that of researchers interested in developing and
evaluating approaches able to recognize LAs, and practitioners
interested in removing LAs from their software systems. The
study aims at addressing the following research questions:
RQ1: Can we use CNN for linguistic smell detection? We ex-
plore the performance of deep learning algorithms, particularly
CNNs, to detect linguistic smells in source code.
RQ2: Do traditional ML classifiers outperform CNN for
linguistic smell detection? We investigate whether traditional,
less resource-consuming classifiers can achieve close, or even
better performance than deep learning alternatives in terms of
precision, recall, F-measure, ROC, and MCC.
RQ3: Are traditional ML classifiers faster than CNNs? We
compare the speed in which traditional machine learning
classifiers and CNN can learn a prediction model.

Figure 1 depicts an overview of our approach. The input
is Java source code on which we run the rule-based LAPD
to detect LAs. To create an oracle, we randomly sample
and manually validate instances of methods and attributes
categorized as LAs and non-LAs by LAPD. We use the Java
source code as well to extract features for the ML classifiers as
follows: we collect and preprocess source code entities and tag
them with part of speech, grammatical dependencies, semantic

relations, and srcML tags. As part of RQ1, we use the
preprocessed source code as input to the CNN. For RQ2, the
various ML algorithms are explored using features extracted
from the preprocessed source code. Finally, we evaluate the
performance of the approaches in RQ1 and RQ2 using the
oracle and the evaluation metrics described in Section IV-F.

The rest of this section is organized as follows: Section IV-A
provides details about the systems used in this study while Sec-
tion IV-B describes the process that we followed to create the
oracle. Section IV-C describes the feature extraction and data
preprocessing. Section IV-D describes how we tune traditional
machine learning classifiers. Section IV-F describes how the
different approaches are evaluated. Section IV-G details the
analysis methods we used to answer our research questions.

A. Dataset

For the purpose of this study we select 13 open-source
Java systems. Table I summarizes the characteristics of the
dataset, namely the system releases analyzed, their size in
terms of number of lines of code (KLOC), and the number of
detected LAs by the rule-based LAPD. System size varies from
small (Junit) to medium (Apache Lucene). Selected systems
belong to different application domains to avoid dependencies
of results on a specific domain or ecosystem.

TABLE I
SUBJECT SYSTEMS

System Size # of Detected
Release (KLOC) LAs

Apache Lucene 6.6.1 1473 488
Apache Beam 246 666
Eclipse 1.0 774 1489
ArgoUML 0.34 391 443
Apache Tomcat 9.0.0 539 1246
Rhino 1.7.7.1 129 326
Apache maven 3.3.6 129 787
Apache spark 2.0.0 141 338
Apache Kafka 0.11.0.1 234 706
Cocoon 2.2.0 61 204
OpenCv 3.3.0 23 2262
JavaCv 1.1 22 254
JUnit 4 43 153

B. Oracle

To build the oracle, we run LAPD2 on each project and
use the generated log files to randomly select a subset of
LAs per project. Each LA was then manually validated by
two evaluators. The kappa agreement between the evaluators
was calculated after validation of instances in intervals of 50.
The kappa values range from 0.80 to 0.88 which indicates
substantial to almost perfect agreement [17]. Instances on
which the evaluators disagreed would be discussed and a
conclusion would try to be reached, the instance was discarded
otherwise.

2http://www.veneraarnaoudova.com/linguistic-anti-pattern-detector-lapd/
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Fig. 1. Overview of the approach.

In the case of a doubtful instance, where the presence of
the LA was not certain, the instance was also discarded. We
followed a similar procedure to randomly select and manually
validate instances that LAPD reported as not being LAs. We
validated a total of 1753 instances in our oracle, derived from
thirteen open-source projects. Out of the 1753 instances of
code entities (methods and attributes), 808 instances contain
LAs of 18 different types and 945 instances are validated as
not containing any LA. Instances in the oracle are labeled with
the type of LA. However, for the purpose of this study, we only
build binary classifiers of the instances predicting whether a
source code entity contains a LA or not, thus combining all
types of LAs into one group.

C. Data collection and preprocessing

We use several preprocessing techniques to remove noise
from the dataset and facilitate prediction. All special non
alphabetic characters in the code are removed, retaining only
the lexical information relevant to the identification of LAs.
LAPD uses parts of speech, semantic relations, and grammatic
dependencies to lexically characterize source code as part of its
rule-based detection. We use the type of information extracted
by the LAPD as a starting point for our dataset and then add
supplemental information to aid smell detection. A detailed
explanation of what kind of information is extracted and how
it is processed follows.

1) Data extraction: When extracting instances from the
source code, we extract the entire source code element. Thus,
for source code entities involving methods, we extract the
method signature, method body, and the comment of the
method (if applicable). For source code entities involving
attributes we extract the entire attribute declaration statement
and any accompanying comments.

2) Splitting: Splitting involves identifying individual terms
in a composed identifier. For example, the identifier
getMessage must be split into its two composing terms: get
and Message. The resulting terms can be dictionary words,
abbreviations, or acronyms. In the context of Java source code,

splitting identifiers using camelCase and underscore heuristics
is sufficient [18].

3) Part Of Speech Tagging: After identifiers have been
split into terms, we build a sentence out of the terms and
perform part of speech analysis to identify the roles and
relations of specific terms within the sentence. We use Stanford
CoreNLP [19]—a set of tools that facilitates POS analy-
sis and identification of grammatical dependencies between
words. The Stanford CoreNLP classifies terms using the Penn
Treebank Tagset [20], and can distinguish between nouns,
verbs, adjectives, and adverbs, as well as their different forms,
e.g., plural noun, verb past participle, etc. For example, the
terms of the identifier getMessage are tagged as verb (VB)
and singular noun (NN), respectively.

4) Grammatical Dependencies: Grammatical dependencies
are direct grammatical relations between terms in a sentence.
For example, the identifier setUserId will first be trans-
formed into the sentence set user id. Then tagging the
sentence with the universal dependency scheme we obtain
root(ROOT,set) where set is the root of the sentence,
compound(id,user) a compound relation between id and
user, and dobj(set,id) a direct object relation between
set and id. For our dataset, we extract grammatical depen-
dencies on every comment and for each individual identifier.

5) Semantic Relations: To find semantic relations between
terms, we use WordNet, a general English ontology. Words
in WordNet are organized based on their relations. Synonyms
are grouped into unordered sets, called synsets, which in turn
are related using semantic and lexical relations. Thus, using
WordNet, we are able to identify semantic relations among the
terms in the source code and comments. Precisely, we extract
synonym and antonym relations.

6) srcML Tagging: srcML is a tool developed by Collard
et al. [21] to parse source code into an equivalent XML
representation. srcML wraps the source code with information
from the Abstract Syntax Tree (AST) and generates tags for
various AST elements. We use this information to tag the
extracted elements with the AST elements it contains. This
is to supply the learner with potentially useful information,



for example, to differentiate between a method comment and
an identifier name.

D. Traditional Machine Learning Classifier Tuning

Fu and Menzies use differential evolution hyper parameter
optimization to tune SVM. Similar work in software engineer-
ing [22] [23] has shown that random search algorithms, such
as the differential evolution algorithm, perform better than
iterative algorithms, such as grid search, in term of speed and
efficiency. However, Bayesian optimization methods have been
shown to rival and even outperform alternative approaches
for hyperparameter optimization, including random search
algorithms [24] [25] [26].

We use Auto-Weka [27], a system designed to automatically
perform attribute selection, search for the optimal learning
algorithm, and hyperparameter settings to maximize perfor-
mance using state-of-the-art Bayesian optimization techniques.
Auto-Weka allows the user to configure time and space con-
straints for the tuning process and returns the best performing
classifier found within the set constraints, optimizing for the
evaluation metric of choice. Similar to Fu and Menzies, we use
F1-score as the tuning goal for Auto-Weka, which means that
when tuning parameters, Auto-Weka finds a combination of
parameters that balance precision and recall to maximize the
F1-score. To evaluate the tuned model consistently with the
manually tuned classifiers and the CNN, we configure Auto-
Weka to use leave-one-out cross validation.

E. CNN Tuning

Experiments have been executed by adapting existing CNN
project available on GitHub3. The code was modified to pass
as parameter the name of the word embedding dictionary
and to store results. This was done to avoid recomputing the
embeddings each time and save resources.

Words embedding have been computed by means of Google
word2vec. We used the efficient C implementation available
on GitHub4. In computing the embedding we reused the
suggested standard parameters, i.e., trained via bag of words
model; a window of five; number of negative examples set
to five; threshold for downsampling the frequent words 1e−4;
and no hierarchical softmax. We experimented with various
embedding sizes and we retained 150 as a compromise to keep
training process memory manageable (i.e., below 20 Gb).

1) CNN Configuration: To tune the model we selected
about one third of all datapoints i.e., about 500 instances and
run several experiments to define CNN architecture. Similar
to Zhang and Wallace [4], [5] we started computing several
simple models (e.g., using one filter type, multiple filter types
of the same size, mixed filter sizes). Due to space reason we
succinctly describe results here.

We experimented with sizes from one to seven since in
previous studies larger windows improved accuracy marginally
(less than 2%) only on one data set (CR [4]). We made the
number of filters to vary: 16, 32, 64, and 128 filters, again the

3CNN Text Project: https://github.com/dennybritz/cnn-text-classification-tf
4word2vec: https://github.com/dav/word2vec

choice was motivated by previous results (a larger number of
features only marginally affects accuracy [4].

Results of single filter type show that the best possible
size is between two and five with no clear winner in the
filter numbers. We then run a second set of experiments. This
time for each candidate filter length (say four) we considered
multiple windows of the same size. The idea is to attempt
modeling relations between different regions of the same
length. For example, for a 16 filters if we have a combination
five, five it means we have two times 16 filters, where in
both families each filter has size five. In this experiment we
considered combinations from two to four regions.

TABLE II
CNN 128 FILTERS MULTIPLE REGIONS CLASSIFIER PERFORMANCE

SIZE REC. PREC. SPECIFICITY F1 ACC.
2,2 49.02 66.67 92.09 56.50 81.58
2,2,2 46.08 65.28 92.09 54.02 80.86
2,2,2,2 48.04 65.33 91.77 55.37 81.10
3,3 45.10 69.70 93.67 54.76 81.82
3,3,3 46.08 73.44 94.62 56.63 82.78
3,3,3,3 47.06 72.73 94.30 57.14 82.78
4,4 44.12 72.58 94.62 54.88 82.30
4,4,4 48.04 76.56 95.25 59.04 83.73
4,4,4,4 47.06 75.00 94.94 57.83 83.25
5,5 44.12 69.23 93.67 53.89 81.58
5,5,5 47.06 78.69 95.89 58.90 83.97
5,5,5,5 48.04 74.24 94.52 58.33 83.01

Table II reports results for the 128 filter configuration for
the various multiple regions (same size) results. Similar results
were obtained for 16, 32, and 64 filters multiple regions
configurations. The best compromise was always between four
and five. We also observed that the performance improved
when increasing the number of filters and thus the number of
features. However, of course, training a 16 filters on multiple
regions (say two and two –overall 32 filters of size two and
thus 32 features) was much faster that training the same
configuration but with 128 per region. Last but not least, it
was unclear, if increasing the number of features (i.e., number
of filters per filter type) above say 500 would have given a
improvement higher than 1% to 2% [4].

2) Training CNN: CNN code runs on top of TensorFlow5.
TensorFlow is an open-source environment with a Python
interface. To run our experiments we resorted on two systems,
the details are summarized in the next paragraphs.

To select the most promising CNN architecture we used
a multi-core system with 64 cores (Xeon E7-8867) each
one capable to run a single thread; the multi-core machine
has a memory of 500 GB. On this system we installed
Python version 3.6 and TensorFlow 1.4. As anecdotal note,
one leave-one-out experiment 16 filters, was requiring about
twelve hours with an average of 10 to 20 parallel train-
ing processes. However, when going from 32 to 64 and
128 filters multiple windows we discovered that time and
memory exploded. Digging into the issue we found two
TensorFlow hidden parameters: intra op parallelism threads
and inter op parallelism threads; they rule the level of par-

5TensorFlow: www.tensorflow.org
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allelism. TensorFlow has two pools of threads, one for par-
allelizing inside one operation (i.e., the intra) and one to
parallelize between operations (i.e., the inter). Suppose, we
have matrix multiplication, we can parallelize with multi-
ple threads, (i.e., intra) but each thread get its one data
copy. Since each thread has its own data copy, if the in-
tra op parallelism threads is not set, TensorFlow will attempt
to use as much memory as possible and as many cores as pos-
sible. We were thus forced to set intra op parallelism threads
to ten and inter op parallelism threads to zero to avoid
processes to grow above limit (e.g., 100GB) and the use of all
64 processors, thus actually slowing down the experiments.

However, it was clear that training on the 1700 data points
oracle would have required weeks and not days even on the 64
cores 500GB cluster. We thus resorted on the high performance
servers of Calcul Quebec6. To speed up computation, we
selected to run training on the nVidia K20 GPU capable
of a peak of about 3.5 TFLops (Tera-Flops). As front-end
we used just one node Intel Ivy Bridge EP E5-2650v2 and
one core (RAM 4GB) per GPU card. On this hardware, the
operating system is a CentOS 6.6, the Python version 3.5 and
TensorFlow release is 1.0 with CUDA libraries 7.5. There
are about 100 dual K20 GPU nodes. We decided to run 40
processes in parallel. This gave us the possibility to compute
one leave-one-out experiment in about 12 hours.

F. Evaluation Method
We evaluate the performance of the models by using the

following metrics:
1) Precision: Precision is defined as the percentage of

methods or attributes predicted as being LAs that are correct
with respect to the oracle.

2) True Positive Rate (TPR): TPR or relative recall is
calculated as the ratio between the number of true positives
and the total number of positive events. It indicates how many
of the manually validated known LAs are correctly discovered.

3) F-Measure: F-Measure (F1 for short) is a measure
used to combine the above two inversely related classification
metrics, for example, precision and recall and is computed as
their harmonic mean. It is defined as: F = 2·P ·R

P+R
4) Area Under the Receiver Operating Characteristic

(ROC) curve: ROC is a plot of the true positive rate against
the false positive rate at various discrimination thresholds. The
area under ROC is close to 1 when the classifier performs
better and close to 0.5 when the classification model is poor
and behaves like a random classifier.

5) Matthews Correlation Coefficient (MCC): MCC is a
measure used in machine learning to assess the quality of
a two-class classifier especially when the classes are unbal-
anced [28]. MCC = TP ·TN−FP ·FN√

(TP+FP )(FN+TN)(FP+TN)(TP+FN)

Values range from -1 to 1. Zero means that the approach
performs like a random classifier. Other correlation values are
interpreted as follows: MCC < 0.2: low, 0.2 ≤MCC < 0.4:
fair, 0.4 ≤ MCC < 0.6: moderate, 0.6 ≤ MCC < 0.8:
strong, and MCC ≥ 0.8: very strong [29].

6www.calculquebec.ca

G. Analysis Method

RQ1: Can we use CNN for linguistic smell detection? We
construct an oracle of 1753 instances, 808 of which contain
linguistic antipatterns, and use this as a dataset on which we
train the CNN. We use leave-one-out validation as well as
the various evaluation metrics described in section IV-F, to
evaluate the performance. We previously determined the most
promising configurations by splitting the training data into
90% for training and 10% for evaluating the parameters.
RQ2: Do traditional ML classifiers outperform CNN for
linguistic smell detection? To answer this research question
we first use part of speech, grammatical dependencies, se-
mantic relations, and srcML tags as the set of features for our
oracle. In Section II-B we list the six unique machine learning
algorithms used in our approach. Two of the algorithms listed,
SMO and SVM, are combined with different kernel implemen-
tations, which results in 9 unique machine learning algorithms
that we tune as described in Sections II-B, IV-D and train on
our oracle. We then use leave-one-out validation as well as
the various evaluation metrics described in Section IV-F, to
evaluate the performance of the classifiers. After evaluating
the models, we compare their performance with the results
found in RQ1.
RQ3: Are traditional ML classifiers faster than CNNs? To
answer this research question we evaluate the top performing
models in RQ1 and RQ2 with respect to the time taken to
build one model.

V. RESULTS

RQ1: Can we use CNN for linguistic smell detection?
Table III contains performance values of the CNN for

various configurations, in terms of precision (PREC.), recall
(REC.), F-measure (F1), ROC, and MCC computed using
leave-one-out for various multi-filter configurations and filter
numbers. Values for F1 range between 72% and 74%, 0.83 to
0.85 for ROC and 0.50 to 0.53 for MCC. The best preforming
configuration, 128 filters of size 5 each, yields a recall of
73.51%, precision of 75.58%, and an F1 of 74.53%. ROC and
MCC are 0.85 and 0.53 respectively, both of which indicate
an adequate prediction model.

Clearly, CNN are able to provide satisfactory results in the
context of lingustic smell detection. However, one may wonder
if a complex and slow configuration such as three families of
128 filters of size 5 (i.e., 384 features) should be preferred over
the faster 16 filters of type 2,3,4, and 5 (i.e., 64 features). The
latter configuration differs from the former by only around 1%
to 2% for all metrics.

RQ2: Do traditional ML classifiers outperform CNN for
linguistic smell detection?

Table IV shows how both manually tuned and Bayesian
optimization tuned traditional machine learning classifiers
perform on the dataset. We vary the parameters of these
ML classifiers as described in Section II-B. Table IV shows
the results of these configurations with ROC values at least
greater than 0.70. Considering the manually tuned classifiers,



TABLE III
CNN PERFORMANCE FOR VARIOUS CONFIGURATIONS

Configuration REC. PREC. F1 ROC MCC

16-2-3-4-5 72.51% 74.08% 73.29% 0.83 0.51

64-3-3-3 71.64% 73.85% 72.73% 0.83 0.50

16-3-3-3 71.39% 73.97% 72.66% 0.83 0.50

32-4-4-4 72.64% 75.16% 73.88% 0.83 0.52

128-5-5-5 73.51% 75.58% 74.53% 0.85 0.53

Random Forest and SVM RBF perform the best in terms of
the evaluation metrics described. Random Forest is the best
performing classifier in terms of precision (79.21%), ROC
(0.85), and MCC (0.55). SVM RBF is the best performing
classifier in terms of recall (73.42%) and F1 (74.76%).

By using Bayesian optimization via Auto-Weka, we achieve
a traditional machine learning classifier that performs ex-
tremely well. Given the time, space, and model constraints,
Auto-Weka determines the best model for the problem space,
which is a tuned SMO Normalized Polykernel, giving a
precision of 91.78%, F1 of 88.77%, ROC at 0.89, and MCC at
0.79. This classifier outperforms the manually tuned classifiers
by more than 10% for precision, recall, F1, and MCC.

Figure 2 compares the results of the top performing manu-
ally tuned classifiers and the optimally tuned classifier relative
to the top performing CNN configuration (128-5-5-5). A delta
was calculated between the classifiers for each metric, per
model. In this case, any bar above zero indicates that the
traditional ML classifier performs better. Bars below zero
indicate that CNN achieved a better performance. We find
that traditional classifiers tuned manually achieve comparable
results to CNN. However, if the effort is made to properly
tune traditional classifiers with a method like Bayesian opti-
mization, traditional machine learning techniques can dramat-
ically outperform CNN. Although manual tuning of machine
learning classifiers can improve performance in most cases,
it requires expert knowledge, domain explicit thresholds, and
sometimes even brute force approaches. As discussed by Fu
and Menzies, this can be extremely costly and time consum-
ing, and is therefore often not done properly, if at all, by
researchers. The nature of the results obtained through Auto-
Weka echoes those obtained through their DE optimization
approach. Similarly, we do not suggest that Bayesian optimiza-
tion is the best tuning approach for all software engineering
tasks, rather we emphasize that traditional machine learning
algorithms should be explored to their full potential before
using more costly deep learning alternatives.

RQ3: Are traditional ML classifiers faster than CNNs?
To have an objective comparison of runtime for the two

learning approaches, we provide the experimental environment
as shown in Table VI. To obtain the runtime of the two
approaches, we record the time taken to train just one model.

Overall results show that, even with relatively more power-
ful hardware, CNN requires quite substantial memory to train

Fig. 2. Score Delta between traditional ML classifiers and CNN in Terms of
Precision, Recall, F1-score, ROC, and MCC. Positive Values indicate better
performance for traditional ML classifiers, negative values indicate better
performance for CNN

with reasonable times and is dramatically slower than tradi-
tional machine learning classifier alternatives, which achieve
comparable, if not better, results in terms of precision and re-
call. Considering time taken to build just one model, traditional
machine learning approaches are at least 16 times faster than
the deep learning approaches. The discrepancy between tuning
time is even larger; using Auto-Weka, the optimal model
can be determined within as little as 2 minutes, compared
to several days for the CNN with leave-one-out validation.
Although one might argue that time can be seen as an up-
front cost, the required memory by CNN remains an issue.
One may wonder if a 10-fold cross validation should have
been preferred. Indeed, a single run would have been faster.
However, it would have been necessary to repeat the exper-
iment several times to establish performance boundary. Last
but not least, results would not be as good for CNN as the
training material would have been reduced.

VI. THREATS TO VALIDITY

Construct validity threats concern the relationship between
theory and observation. In this study, construct validity threats
are mainly due to measurement errors of labeled LAs. To build
our oracle we used LAPD and randomly sampled methods
from thirteen open-source Java systems. All LA instances were
manually validated. The manual validation could be affected
by subjectiveness or by the lack of domain knowledge. To
mitigate those threats, in case of doubt, the surrounding code
of an entity was analyzed and if the doubt still remained the
entity was discarded. As for the recall, we are aware that
the sample of instances that do not contain LAs may not be
fully representative of the entire set. To mitigate this threat we
randomly sampled source code entities from the entire pool of
analyzed projects resulting in 945 entities that do not contain
LAs from seven open-source projects. Note that the purpose
of this training dataset is to have enough instances to train a
model. Ideally, models are evaluated on a test set which is a
set of unseen data that represents the true prevalence of LAs
in source code. However, for the purpose of our study, we



TABLE IV
TRADITIONAL ML CLASSIFIER PERFORMANCE

CLASSIFIER PARAMETERS RECALL PRECISION F1 ROC MCC

Random Forest #Trees 500 69.57% 79.21% 74.07% 0.85 0.55
#Trees 1000 68.82% 78.69% 73.43% 0.85 0.54

J48 Pruned Default 71.30% 73.40% 72.34% 0.76 0.49
MinNumObj 8 67.20% 71.85% 69.45% 0.79 0.45

J48 UnPruned Default 72.30% 73.30% 72.80% 0.78 0.49

SMO RBF Cost 1, Gamma 0.1 66.46% 77.31% 71.48% 0.75 0.51

SMO PUK Cost 5.0, Omega 8.0, Sigma 5.0 71.68% 77.24% 74.36% 0.77 0.54

SMO Poly Kernel Cost 1.0, Exp 2.0 68.82% 68.14% 68.48% 0.71 0.41
Cost 5.0, Exp 2.0 70.93% 68.80% 69.85% 0.72 0.43

SVM RBF Gamma 0.1, cost 50 73.42% 76.16% 74.76% 0.77 0.54

SVM Poly Cost 0.5, gamma 0.15 72.30% 75.10% 73.67% 0.76 0.52

Naive Bayes Default 64.22% 65.11% 64.67% 0.72 0.35

Tuned SMO Normalized Poly kernel 85.96% 91.78% 88.77% 0.89 0.79

TABLE V
TIME AND MEMORY OF CNN AND TRADITIONAL ML CLASSIFIERS

Configuration Time (s) Memory (GB)

16-2-3-4-5 570.50 89.42
64-3-3-3 387.26 87.18
16-3-3-3 281.93 86.48
32-4-4-4 342.43 96.12
128-5-5-5 647.48 94.10

Random Forest 4.36 1.80
J48 Pruned 0.35 1.80
J48 UnPruned 0.09 1.80
SMO RBF 2.79 1.80
SMO PUK 3.62 1.80
SMO Poly Kernel 16.77 1.80
SVM RBF 0.48 1.80
SVM Poly Kernel 0.29 1.80
Naive Bayes 0.19 1.80

Tuned SMO Normalized Poly kernel 5.02 1.02

TABLE VI
COMPARISON OF EXPERIMENT ENVIRONMENT

Methods OS CPU RAM

ML Mac OS 10.12 Intel Core i7 4.01 GHz 64 GB

CNN CentOS 7.3 64 Xeon E7-8867 500GB
CentOS 6.6/ CUDA 7.5 40 x nVidia K20 40 x 4 GB

only evaluate our models using leave-one-out validation. The
reason being that our goal is to compare the performance of
each approach not to claim the best accuracy.

Internal validity threats concern factors internal to our study
that could have influenced our results. As explained in Sec-
tion II-B, machine learning algorithms are trained with manual
tuning of some parameters as well as Bayesian optimization
through Auto-Weka. It is possible that better results could
be obtained by providing Auto-weka more time and space

resources. However, the worst case scenario would simply
mean that our results represent a lower-bound. Different pre-
processing and linguistic analysis techniques could be applied,
and therefore it is possible that alternative representations and
fact extractors could produce different results. However, our
goal was to verify if simple, easy to gather information coupled
with CNN could give better performance than a traditional
machine learning approach. We cannot be sure that other types
of feature will lead to different results; however such features
will require heavier processing which defies the goal to benefit
from a simple system architecture.

Conclusion validity threats concern the relationship between
the treatments and the outcome. We report results using
appropriate diagnostics for the machine learner performances
(such as ROC and MCC). Then, when discussing findings
we keep into account acceptable ranges for ROC and MCC
(i.e., ROC must be ≥ 0.5 and MCC > 0). However, when
comparing CNN with traditional machine learning we were not
able to apply statistical tests. The reason is the time required
to train CNN. In a sense this may hinder our conclusion on
the accuracy but does not affect the huge difference in compu-
tation time. A further minor concern is the AUC comparison.
TensorFlow CNN used in leave-one-out mode does not provide
ROC and AUC. We thus mapped TensorFlow scores into
probabilities by means of the softmax transformation and then
used the score of one class to obtain ROC. On the computed
ROC we did an approximated integration (i.e., sum of deltas
FPR, TPR). This may result in an imprecision of AUC. We
believe this is a minor point since we also computed precision,
recall accuracy and MCC which are directly computed on the
CNN classification.

Reliability validity threats concern the possibility of replicat-
ing this study. We attempt to provide all the necessary details
needed to replicate our study and we share the oracle.

External validity threats concern the possibility of gener-



alizing our results. Despite the fact we used thirteen open-
source Java systems, and even though the thirteen systems
cover different domains, we cannot guarantee that the finding
generalize to the entire universe of Java programs. One further
issue is the size of the dataset we used. Fu and Menzies [3]
experiment was based on about 6,400 data points. Our results
are reported on about 1,700 data points. The size of our dataset
is tied to the need to manually validate LA instances. We are
aware that 1,700 data points are half of the size of the smallest
dataset used in previous studies such as [4], [5], [15]; due
to this reason we opted for leave-one-out instead of a 10-
fold cross validation. We plan to further extend the dataset to
further validate our findings. However, this also will result in
a longer computation time for CNN.

VII. CONCLUSION

In this paper, we perform a comparative study to investigate
how traditional machine learning classifiers can outperform
state of the art deep learning methods for predicting linguistic
smells in source code. Results show that traditional machine
learning algorithms run much faster, require far less tuning,
can run on a standard laptop, and ultimately achieve similar
or very comparable results to deep learning alternatives.

We find that, using Bayesian optimization techniques for
hyper parameter tuning and model selection, we can achieve
a traditional machine learning model that outperforms CNN
in terms of all evaluation metrics used, as well as time
and memory resources. Although deep learning is reported
to produce results comparable and even superior to human
experts for certain complex tasks, it doesn’t seem to be a good
fit for simple classification tasks like smell detection, and CNN
in this case is significantly slower and more computationally
expensive than the traditional machine learning classifiers.
Therefore, researchers and practitioners should be careful
when selecting machine learning models for their problems
and be sure to explore the full potential of traditional machine
learning models via hyper parameter tuning before turning to
more complex and taxing approaches.
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